Depth versus Rigidity in the Design of International Trade Agreements

Leslie Johns

Supplemental Appendix - September 3, 2012

1 Alternative Punishment Mechanisms

The one-period utility functions of the home and foreign government- W and W^{*}, respectively-are as follows:

$$
\begin{aligned}
W(t, \tau, a) & =a u(t)-t-u(\tau) \\
W^{*}(t, \tau, \alpha) & =\alpha u(\tau)-\tau-u(t)
\end{aligned}
$$

Losses are:

$$
\begin{aligned}
L(\tau) & =W\left(t, t_{B}, a\right)-W(t, \tau, a)=u(\tau)-u\left(\tau_{B}\right) \\
L^{*}(t) & =W^{*}\left(t_{B}, \tau, \alpha\right)-W^{*}(t, \tau, \alpha)=u(t)-u\left(t_{B}\right)
\end{aligned}
$$

Let χ_{P} denote the continuation payoff from the punishment that occurs if at least one player defects. Assume that χ_{P} is not a function of the specific value of the defection tariff.
Let χ_{C} denote the continuation payoff if the treaty remains in effect (neither player defects).
Recall that $a, \alpha \sim_{i i d} U[1, A]$ for large $A, u^{\prime}>0$, and $u^{\prime \prime}<0$.

1.1 Optimal Tariffs

The home country's expected utility from violating the binding and not paying the fine (defection) is:

$$
E U(D \mid t, a)=a u(t)-t-\int_{1}^{A} u(\tau(\alpha)) d H(\alpha)+\int_{\alpha_{S}}^{\alpha_{D}} \sigma L(\tau(\alpha)) d H(\alpha)+\delta \chi_{P}
$$

So the optimal defection tariff solves:

$$
\begin{aligned}
\frac{\partial E U(D \mid t, a)}{\partial t} & =a u^{\prime}(t)-1=0 \\
& \Leftrightarrow u^{\prime}(t)=\frac{1}{a} \Leftrightarrow t_{D}(a)=u^{\prime-1}\left(\frac{1}{a}\right)
\end{aligned}
$$

This violates the binding iff:

$$
t_{D}(a)=u^{\prime-1}\left(\frac{1}{a}\right)>t_{B} \Leftrightarrow \frac{1}{a}<u^{\prime}\left(t_{B}\right) \Leftrightarrow a>\frac{1}{u^{\prime}\left(t_{B}\right)} \equiv a_{B}
$$

The home country's expected utility from violating the binding and paying the fine (settlement) is:

$$
\begin{gathered}
E U(S \mid t, a)=a u(t)-t-\sigma L^{*}(t)-\int_{1}^{A} u(\tau(\alpha)) d H(\alpha)+\int_{\alpha_{S}}^{\alpha_{D}} \sigma L(\tau(\alpha)) d H(\alpha) \\
+H\left(\alpha_{D}\right) \delta \beta \chi_{C}+\left[1-H\left(\alpha_{D}\right)\right] \delta \chi_{P}
\end{gathered}
$$

So the optimal settlement tariff solves:

$$
\begin{aligned}
\frac{\partial E U(S \mid t, a)}{\partial t} & =a u^{\prime}(t)-1-\sigma u^{\prime}(t)=0 \\
& \Leftrightarrow u^{\prime}(t)=\frac{1}{a-\sigma} \Leftrightarrow t_{S}(a)=u^{\prime-1}\left(\frac{1}{a-\sigma}\right)
\end{aligned}
$$

This violates the binding iff:

$$
\begin{aligned}
t_{S}(a) & =u^{\prime-1}\left(\frac{1}{a-\sigma}\right)>t_{B} \Leftrightarrow \frac{1}{a-\sigma}<u^{\prime}\left(t_{B}\right) \\
& \Leftrightarrow a>\frac{1}{u^{\prime}\left(t_{B}\right)}+\sigma \equiv a_{S}
\end{aligned}
$$

Note that: $t_{S}(a)<t_{D}(a)$ for all a.
The optimal cooperative tariff is:

$$
t_{B}(a)= \begin{cases}t_{D}(a) & \text { if } a<a_{B} \\ t_{B} & \text { if } a_{B} \leq a\end{cases}
$$

1.2 Equilibrium Regions

The home country's expected utility from actions C, S, and D given optimal tariff levels are:

$$
\begin{aligned}
E U\left(C \mid t_{B}(a), a\right)= & a u\left(t_{B}(a)\right)-t_{B}(a)-\int_{1}^{A} u(\tau(\alpha)) d H(\alpha)+\int_{\alpha_{S}}^{\alpha_{D}} \sigma L(\tau(\alpha)) d H(\alpha) \\
& +H\left(\alpha_{D}\right) \delta \beta \chi_{C}+\left[1-H\left(\alpha_{D}\right)\right] \delta \chi_{P} \\
E U\left(S \mid t_{S}(a), a\right)= & a u\left(t_{S}(a)\right)-t_{S}(a)-\sigma L^{*}\left(t_{S}(a)\right)-\int_{1}^{A} u(\tau(\alpha)) d H(\alpha)+\int_{\alpha_{S}}^{\alpha_{D}} \sigma L(\tau(\alpha)) d H(\alpha) \\
& +H\left(\alpha_{D}\right) \delta \beta \chi_{C}+\left[1-H\left(\alpha_{D}\right)\right] \delta \chi_{P} \\
E U\left(D \mid t_{D}(a), a\right)= & a u\left(t_{D}(a)\right)-t_{D}(a)-\int_{1}^{A} u(\tau(\alpha)) d H(\alpha)+\int_{\alpha_{S}}^{\alpha_{D}} \sigma L(\tau(\alpha)) d H(\alpha)+\delta \chi_{P}
\end{aligned}
$$

To compare utility from actions C and S, define for $a_{S} \leq a$:

$$
\begin{aligned}
\hat{\Delta}(a) & =E U\left(C \mid t_{B}(a), a\right)-E U\left(S \mid t_{S}(a), a\right) \\
& =a u\left(t_{B}\right)-t_{B}-a u\left(t_{S}(a)\right)+t_{S}(a)+\sigma L^{*}\left(t_{S}(a)\right)
\end{aligned}
$$

Note that $t_{S}\left(a_{S}\right)=t_{B}$, so $\hat{\Delta}\left(a_{S}\right)=0$. Also:

$$
\begin{aligned}
\frac{\partial \hat{\Delta}}{\partial a} & =u\left(t_{B}\right)-u\left(t_{S}(a)\right)-(a-\sigma) u^{\prime}\left(t_{S}(a)\right) \frac{\partial t_{S}(a)}{\partial a}+\frac{\partial t_{S}(a)}{\partial a} \\
& =u\left(t_{B}\right)-u\left(t_{S}(a)\right)<0
\end{aligned}
$$

So S strictly dominates C for all $a_{S}<a$.
To compare utility from actions S and D, define for $a_{S} \leq a$:

$$
\begin{aligned}
\bar{\Delta}(a)= & E U\left(S \mid t_{S}(a), a\right)-E U\left(D \mid t_{D}(a), a\right) \\
= & a u\left(t_{S}(a)\right)-t_{S}(a)-\sigma L^{*}\left(t_{S}(a)\right) \\
& -a u\left(t_{D}(a)\right)+t_{D}(a)+\delta H\left(\alpha_{D}\right)\left(\beta \chi_{C}-\chi_{P}\right) \\
\text { So: } \quad \frac{\partial \bar{\Delta}}{\partial a}= & (a-\sigma) u^{\prime}\left(t_{S}(a)\right) \frac{\partial t_{S}(a)}{\partial a}-\frac{\partial t_{S}(a)}{\partial a}+u\left(t_{S}(a)\right) \\
& +\frac{\partial t_{D}(a)}{\partial a}-a u^{\prime}\left(t_{D}(a)\right) \frac{\partial t_{D}(a)}{\partial a}-u\left(t_{D}(a)\right) \\
= & u\left(t_{S}(a)\right)-u\left(t_{D}(a)\right)<0
\end{aligned}
$$

So D strictly dominates S for sufficiently large values of a. By symmetry, indifference point a_{D} is implicitly defined by:

$$
\begin{aligned}
\lambda= & a_{D}\left[u\left(t_{S}\left(a_{D}\right)\right)-u\left(t_{D}\left(a_{D}\right)\right)\right]+t_{D}\left(a_{D}\right)-t_{S}\left(a_{D}\right) \\
& -\sigma L^{*}\left(t_{S}\left(a_{D}\right)\right)+\delta H\left(a_{D}\right)\left(\beta \chi_{C}-\chi_{P}\right)=0
\end{aligned}
$$

The equilibrium exists iff: $\bar{\Delta}\left(a_{S}\right)>0$.

1.3 Continuation Values

Let $t_{E}(a)$ denote equilibrium tariffs when the institution is in place.
The continuation payoff for home from the treaty being in effect is:

$$
\begin{aligned}
\chi_{C}= & \int_{0}^{A}\left[a u\left(t_{E}(a)\right)-t_{E}(a)\right] d H(a)-\sigma \int_{a_{S}}^{a_{D}} L^{*}\left(t_{E}(a)\right) d H(a)-\int_{1}^{A} u\left(\tau_{E}(\alpha)\right) d H(\alpha) \\
& +\sigma \int_{\alpha_{S}}^{\alpha_{D}} L^{*}\left(\tau_{E}(\alpha)\right) d H(\alpha)+\delta H\left(a_{D}\right)^{2} \beta \chi_{C}+\delta\left[1-H\left(a_{D}\right)^{2}\right] \chi_{P} \\
= & \frac{\Psi}{1-\delta \beta H\left(a_{D}\right)^{2}} \\
\text { where } \Psi= & \int_{1}^{A}\left[(a-1) u\left(t_{E}(a)\right)-t_{E}(a)\right] d H(a)+\delta\left[1-H\left(a_{D}\right)^{2}\right] \chi_{P}
\end{aligned}
$$

1.4 Comparative Statics

Full Compliance
Recall that the binding is not violated if $a<a_{S}=\frac{1}{u^{\prime}\left(t_{B}\right)}+\sigma$. So the probability that the binding is not violated is $H\left(a_{S}\right)$.

$$
\frac{\partial a_{S}}{\partial t_{B}}=\frac{-u^{\prime \prime}\left(t_{B}\right)}{\left[u^{\prime}\left(t_{B}\right)\right]^{2}}>0 \quad \text { and } \quad \frac{\partial a_{S}}{\partial \sigma}=1>0
$$

Stability

The institution is stable if $a<a_{D}$. By the implicit function theorem:

$$
\frac{\partial a_{D}}{\partial t_{B}}=-\frac{\lambda_{t_{B}}}{\lambda_{a_{D}}} \quad \text { and } \quad \frac{\partial a_{D}}{\partial \sigma}=-\frac{\lambda_{\sigma}}{\lambda_{a_{D}}}
$$

Then for large A :

$$
\begin{aligned}
\lambda_{a_{D}}= & \left(a_{D}-\sigma\right) u^{\prime}\left(t_{S}\left(a_{D}\right)\right) \frac{\partial t_{S}\left(a_{D}\right)}{\partial a_{D}}-\frac{\partial t_{S}\left(a_{D}\right)}{\partial a_{D}}-a_{D} u^{\prime}\left(t_{D}\left(a_{D}\right)\right) \frac{\partial t_{D}\left(a_{D}\right)}{\partial a_{D}}+\frac{\partial t_{D}\left(a_{D}\right)}{\partial a_{D}} \\
& +u\left(t_{S}\left(a_{D}\right)\right)-u\left(t_{D}\left(a_{D}\right)\right)+\delta H\left(a_{D}\right) \frac{\partial\left(\beta \chi_{C}-\chi_{P}\right)}{\partial a_{D}}+\delta h\left(a_{D}\right)\left(\beta \chi_{C}-\chi_{P}\right) \\
= & u\left(t_{S}\left(a_{D}\right)\right)-u\left(t_{D}\left(a_{D}\right)\right)+\delta H\left(a_{D}\right) \frac{\partial\left(\beta \chi_{C}-\chi_{P}\right)}{\partial a_{D}}+\delta h\left(a_{D}\right)\left(\beta \chi_{C}-\chi_{P}\right)<0 \\
\lambda_{t_{B}}= & \sigma u^{\prime}\left(t_{B}\right)+\delta H\left(a_{D}\right) \frac{\partial\left(\beta \chi_{C}-\chi_{P}\right)}{\partial t_{B}}>0 \\
\lambda_{\sigma}= & \left(a_{D}-\sigma\right) u^{\prime}\left(t_{S}\left(a_{D}\right)\right) \frac{\partial t_{S}\left(a_{D}\right)}{\partial \sigma}-\frac{\partial t_{S}\left(a_{D}\right)}{\partial \sigma} \\
& -\left[u\left(t_{S}\left(a_{D}\right)\right)-u\left(t_{B}\right)\right]+\delta H\left(a_{D}\right) \frac{\partial\left(\beta \chi_{C}-\chi_{P}\right)}{\partial \sigma} \\
= & -\left[u\left(t_{S}\left(a_{D}\right)\right)-u\left(t_{B}\right)\right]+\delta H\left(a_{D}\right) \frac{\partial\left(\beta \chi_{C}-\chi_{P}\right)}{\partial \sigma}<0 \\
& \text { So: } \frac{\partial a_{D}}{\partial t_{B}}>0 \text { and } \frac{\partial a_{D}}{\partial \sigma}<0
\end{aligned}
$$

Depth versus Rigidity

Recall that χ_{C} is the expected utility of a state from being a member of the cooperative regime. In equilibrium, $\lambda=0$. So for any pair $\left(t_{B}, \sigma\right)$:

$$
\chi_{C}=\frac{a_{D}\left[u\left(t_{D}\left(a_{D}\right)\right)-u\left(t_{S}\left(a_{D}\right)\right)\right]-t_{D}\left(a_{D}\right)+t_{S}\left(a_{D}\right)+\sigma L^{*}\left(t_{S}\left(a_{D}\right)\right)}{\delta \beta H\left(a_{D}\right)}+\frac{\chi_{P}}{\beta}
$$

The two first-order conditions on the optimal pair $\left(t_{B}, \sigma\right)$ are:

$$
\begin{aligned}
\frac{d \chi_{C}}{d t_{B}} & =\frac{\partial \chi_{C}}{\partial t_{B}}+\frac{\partial \chi_{C}}{\partial a_{D}} \frac{\partial a_{D}}{\partial t_{B}}=0 \\
\frac{d \chi_{C}}{d \sigma} & =\frac{\partial \chi_{C}}{\partial \sigma}+\frac{\partial \chi_{C}}{\partial a_{D}} \frac{\partial a_{D}}{\partial \sigma}=0
\end{aligned}
$$

This implies that:

$$
\begin{gathered}
\frac{\frac{\partial \chi_{C}}{\partial t_{B}}}{\frac{\partial \chi_{C}}{\partial \sigma}}=\frac{\frac{\partial a_{D}}{\partial t_{B}}}{\frac{\partial a_{D}}{\partial \sigma}} \\
\frac{\left(\frac{\partial \chi_{C}}{\partial t_{B}}\right)\left(\frac{\partial a_{D}}{\partial \sigma}\right)}{\frac{\partial \chi_{C}}{\partial \sigma}}=\frac{\partial a_{D}}{\partial t_{B}}
\end{gathered}
$$

So for any pair $\left(t_{B}, \sigma\right)$ that generates $\chi_{C}\left(t_{B}, \sigma\right)=\chi^{*}$:

$$
\begin{aligned}
\frac{d t_{B}}{d \sigma} & =\frac{-\left(\frac{d \chi_{C}}{d \sigma}\right)}{\frac{d \chi_{C}}{d t_{B}}}=\frac{-\left(\frac{\partial \chi_{C}}{\partial \sigma}+\frac{\partial \chi_{C}}{\partial a_{D}} \frac{\partial a_{D}}{\partial \sigma}\right)}{\frac{\partial \chi_{C}}{\partial t_{B}}+\frac{\partial \chi_{C}}{\partial a_{D}} \frac{\partial a_{D}}{\partial t_{B}}} \\
= & \frac{-\left(\frac{\partial \chi_{C}}{\partial \sigma}+\frac{\partial \chi_{C}}{\partial a_{D}} \frac{\partial a_{D}}{\partial \sigma}\right)}{\frac{\partial \chi_{C}}{\partial t_{B}}+\left(\frac{\partial \chi_{C}}{\partial a_{D}}\right) \frac{\left(\frac{\partial \chi_{C}}{\partial t_{B}}\right)\left(\frac{\partial a_{D}}{\partial \sigma}\right)}{\frac{\partial \chi_{C}}{\partial \sigma}}} \\
= & -\frac{\partial \chi_{C}}{\partial \sigma}\left(\frac{\partial \chi_{C}}{\partial \sigma}+\frac{\partial \chi_{C}}{\partial a_{D}} \frac{\partial a_{D}}{\partial \sigma}\right) \\
& =\frac{\left.-\frac{\partial \chi_{C}}{\partial t_{B}}\right)\left(\frac{\partial \chi_{C}}{\partial \sigma}\right)+\left(\frac{\partial \chi_{C}}{\partial a_{D}}\right)\left(\frac{\partial \chi_{C}}{\partial t_{B}}\right)\left(\frac{\partial a_{D}}{\partial \sigma}\right)}{\frac{\partial \chi_{C}}{\partial t_{B}}\left[\frac{\partial \chi_{C}}{\partial \sigma}+\left(\frac{\partial \chi_{C}}{\partial \sigma}+\frac{\partial \chi_{C}}{\partial a_{D}} \frac{\partial a_{D}}{\partial \sigma}\right)\left(\frac{\partial a_{D}}{\partial \sigma}\right)\right]}=\frac{-\frac{\partial \chi_{C}}{\partial \sigma}}{\frac{\partial \chi_{C}}{\partial t_{B}}}
\end{aligned}
$$

where:

$$
\begin{aligned}
\frac{\partial \chi_{C}}{\partial \sigma}= & \frac{1}{\delta \beta H\left(a_{D}\right)}\left[-a_{D} u^{\prime}\left(t_{S}\left(a_{D}\right)\right) \frac{\partial t_{S}\left(a_{D}\right)}{\partial \sigma}+\frac{\partial t_{S}\left(a_{D}\right)}{\partial \sigma}+\sigma u^{\prime}\left(t_{S}\left(a_{D}\right)\right) \frac{\partial t_{S}\left(a_{D}\right)}{\partial \sigma}\right] \\
& +\frac{1}{\delta \beta H\left(a_{D}\right)}\left[L^{*}\left(t_{S}\left(a_{D}\right)\right)\right]+\left(\frac{1}{\beta}\right) \frac{\partial \chi_{P}}{\partial \sigma} \\
= & \frac{L^{*}\left(t_{S}\left(a_{D}\right)\right)}{\delta \beta H\left(a_{D}\right)}+\left(\frac{1}{\beta}\right) \frac{\partial \chi_{P}}{\partial \sigma} \\
\frac{\partial \chi_{C}}{\partial t_{B}}= & \frac{-\sigma u^{\prime}\left(t_{B}\right)}{\delta \beta H\left(a_{D}\right)}+\left(\frac{1}{\beta}\right) \frac{\partial \chi_{P}}{\partial t_{B}}
\end{aligned}
$$

So:

$$
\begin{aligned}
\frac{d t_{B}}{d \sigma} & =\frac{-\frac{\partial \chi_{C}}{\partial \sigma}}{\frac{\partial \chi_{C}}{\partial t_{B}}}=\frac{-\left[\frac{L^{*}\left(t_{S}\left(a_{D}\right)\right)}{\delta \beta H\left(a_{D}\right)}+\left(\frac{1}{\beta}\right) \frac{\partial \chi_{P}}{\partial \sigma}\right]}{\frac{-\sigma u^{\prime}\left(t_{B}\right)}{\delta \beta H\left(a_{D}\right)}+\left(\frac{1}{\beta}\right) \frac{\partial \chi_{P}}{\partial t_{B}}} \\
& =\frac{L^{*}\left(t_{S}\left(a_{D}\right)\right)+\delta H\left(a_{D}\right) \frac{\partial \chi_{P}}{\partial \sigma}}{\sigma u^{\prime}\left(t_{B}\right)-\delta H\left(a_{D}\right) \frac{\partial \chi_{P}}{\partial t_{B}}}>0 \quad \text { for small } A
\end{aligned}
$$

2 Asymmetric Type Distributions

Assume that home country type, a, is distributed according to distribution function $H(a)$. Denote home continuation payoffs by χ_{N} and χ_{C}.

Assume that foreign country type, α, is distributed according to distribution function $F(\alpha)$. Denote foreign continuation payoffs χ_{N}^{*} and χ_{C}^{*}.
The one-period utility functions of the home and foreign government- W and W^{*}, respectively-are as follows:

$$
\begin{aligned}
W(t, \tau, a) & =a u(t)-t-u(\tau) \\
W^{*}(t, \tau, \alpha) & =\alpha u(\tau)-\tau-u(t)
\end{aligned}
$$

Losses are:

$$
\begin{aligned}
L(\tau) & =W\left(t, \tau_{B}, a\right)-W(t, \tau, a)=u(\tau)-u\left(\tau_{B}\right) \\
L^{*}(t) & =W^{*}\left(t_{B}, \tau, \alpha\right)-W^{*}(t, \tau, \alpha)=u(t)-u\left(t_{B}\right)
\end{aligned}
$$

2.1 Optimal Tariffs

Home

The home country's expected utility from from violating the binding and not paying compensation (defection) is:

$$
U(D \mid t, a)=a u(t)-t-\int u(\tau(\alpha)) d F(\alpha)+\int_{\alpha_{S}}^{\alpha_{D}} \sigma L(\tau(\alpha)) d F(\alpha)+\delta \chi_{N}
$$

So the optimal defection tariff solves:

$$
\begin{aligned}
\frac{\partial U(D \mid t, a)}{\partial t} & =a u^{\prime}(t)-1=0 \\
& \Leftrightarrow u^{\prime}(t)=\frac{1}{a} \Leftrightarrow t_{D}(a)=u^{\prime-1}\left(\frac{1}{a}\right)
\end{aligned}
$$

This violates the home binding iff:

$$
t_{D}(a)=u^{\prime-1}\left(\frac{1}{a}\right)>t_{B} \Leftrightarrow \frac{1}{a}<u^{\prime}\left(t_{B}\right) \Leftrightarrow a>\frac{1}{u^{\prime}\left(t_{B}\right)} \equiv a_{B}
$$

The home country's expected utility from violating the binding and paying compensation (settlement) is:

$$
\begin{gathered}
U(S \mid t, a)=a u(t)-t-\sigma L^{*}(t)-\int u(\tau(\alpha)) d F(\alpha)+\int_{\alpha_{S}}^{\alpha_{D}} \sigma L(\tau(\alpha)) d F(\alpha) \\
+F\left(\alpha_{D}\right) \delta \beta \chi_{C}+\left[1-F\left(\alpha_{D}\right)\right] \delta \chi_{N}
\end{gathered}
$$

So the optimal settlement tariff solves:

$$
\begin{aligned}
\frac{\partial U(S \mid t, a)}{\partial t} & =a u^{\prime}(t)-1-\sigma u^{\prime}(t)=0 \\
& \Leftrightarrow u^{\prime}(t)=\frac{1}{a-\sigma} \Leftrightarrow t_{S}(a)=u^{\prime-1}\left(\frac{1}{a-\sigma}\right)
\end{aligned}
$$

This violates the home binding iff:

$$
\begin{aligned}
t_{S}(a) & =u^{\prime-1}\left(\frac{1}{a-\sigma}\right)>t_{B} \Leftrightarrow \frac{1}{a-\sigma}<u^{\prime}\left(t_{B}\right) \\
& \Leftrightarrow a>\frac{1}{u^{\prime}\left(t_{B}\right)}+\sigma \equiv a_{S}
\end{aligned}
$$

Note that: $t_{S}(a)<t_{D}(a)$ for all a. The optimal cooperative tariff is:

$$
t_{B}(a)= \begin{cases}t_{D}(a) & \text { if } a<a_{B} \\ t_{B} & \text { if } a_{B} \leq a\end{cases}
$$

Foreign

The foreign country's expected utility from from violating the binding and not paying compensation (defection) is:

$$
U^{*}(D \mid \tau, \alpha)=\alpha u(\tau)-\tau-\int u(t(a)) d H(a)+\int_{a_{S}}^{a_{D}} \sigma L^{*}(t(a)) d H(a)+\delta \chi_{N}^{*}
$$

So the optimal defection tariff solves:

$$
\begin{aligned}
\frac{\partial U^{*}(D \mid \tau, \alpha)}{\partial \tau} & =\alpha u^{\prime}(\tau)-1=0 \\
& \Leftrightarrow u^{\prime}(\tau)=\frac{1}{\alpha} \Leftrightarrow \tau_{D}(\alpha)=u^{\prime-1}\left(\frac{1}{\alpha}\right)
\end{aligned}
$$

This violates the foreign binding iff:

$$
\tau_{D}(\alpha)=u^{\prime-1}\left(\frac{1}{\alpha}\right)>\tau_{B} \Leftrightarrow \frac{1}{\alpha}<u^{\prime}\left(\tau_{B}\right) \quad \Leftrightarrow \quad \alpha>\frac{1}{u^{\prime}\left(\tau_{B}\right)} \equiv \alpha_{B}
$$

The foreign country's expected utility from violating the binding and paying compensation (settlement) is:

$$
\begin{gathered}
U^{*}(S \mid \tau, \alpha)=\alpha u(\tau)-\tau-\sigma L(\tau)-\int u(t(a)) d H(a)+\int_{a_{S}}^{a_{D}} \sigma L^{*}(t(a)) d H(a) \\
+H\left(a_{D}\right) \delta \beta \chi_{C}^{*}+\left[1-H\left(a_{D}\right)\right] \delta \chi_{N}^{*}
\end{gathered}
$$

So the optimal settlement tariff solves:

$$
\begin{aligned}
\frac{\partial U^{*}(S \mid \tau, \alpha)}{\partial \tau} & =\alpha u^{\prime}(\tau)-1-\sigma u^{\prime}(\tau)=0 \\
& \Leftrightarrow u^{\prime}(\tau)=\frac{1}{\alpha-\sigma} \Leftrightarrow \tau_{S}(\alpha)=u^{\prime-1}\left(\frac{1}{\alpha-\sigma}\right)
\end{aligned}
$$

This violates the foreign binding iff:

$$
\begin{aligned}
\tau_{S}(\alpha) & =u^{\prime-1}\left(\frac{1}{\alpha-\sigma}\right)>\tau_{B} \Leftrightarrow \frac{1}{\alpha-\sigma}<u^{\prime}\left(\tau_{B}\right) \\
& \Leftrightarrow \alpha>\frac{1}{u^{\prime}\left(\tau_{B}\right)}+\sigma \equiv \alpha_{S}
\end{aligned}
$$

Note that: $\tau_{S}(\alpha)<\tau_{D}(\alpha)$ for all α. The optimal cooperative tariff is:

$$
\tau_{B}(\alpha)= \begin{cases}\tau_{D}(\alpha) & \text { if } \alpha<\alpha_{B} \\ \tau_{B} & \text { if } \alpha_{B} \leq \alpha\end{cases}
$$

2.2 Equilibrium Regions

Home

The home country's expected utility from actions C, S, and D given tariff levels above are:

$$
\begin{aligned}
U\left(C \mid t_{B}(a), a\right)= & a u\left(t_{B}(a)\right)-t_{B}(a)-\int u(\tau(\alpha)) d F(\alpha)+\int_{\alpha_{S}}^{\alpha_{D}} \sigma L(\tau(\alpha)) d F(\alpha) \\
& +F\left(\alpha_{D}\right) \delta \beta \chi_{C}+\left[1-F\left(\alpha_{D}\right)\right] \delta \chi_{N} \\
U\left(S \mid t_{S}(a), a\right)= & a u\left(t_{S}(a)\right)-t_{S}(a)-\sigma L^{*}\left(t_{S}(a)\right)-\int u(\tau(\alpha)) d F(\alpha)+\int_{\alpha_{S}}^{\alpha_{D}} \sigma L(\tau(\alpha)) d F(\alpha) \\
& +F\left(\alpha_{D}\right) \delta \beta \chi_{C}+\left[1-F\left(\alpha_{D}\right)\right] \delta \chi_{N} \\
U\left(D \mid t_{D}(a), a\right)= & a u\left(t_{D}(a)\right)-t_{D}(a)-\int u(\tau(\alpha)) d F(\alpha)+\int_{\alpha_{S}}^{\alpha_{D}} \sigma L(\tau(\alpha)) d F(\alpha)+\delta \chi_{N}
\end{aligned}
$$

To compare home utility from actions C and S, define for $a_{S} \leq a$:

$$
\begin{aligned}
\hat{\Delta}(a) & =U\left(C \mid t_{B}(a), a\right)-U\left(S \mid t_{S}(a), a\right) \\
& =a u\left(t_{B}\right)-t_{B}-a u\left(t_{S}(a)\right)+t_{S}(a)+\sigma L^{*}\left(t_{S}(a)\right)
\end{aligned}
$$

Note that $t_{S}\left(a_{S}\right)=t_{B}$, so $\hat{\Delta}\left(a_{S}\right)=0$. Also:

$$
\begin{aligned}
\frac{\partial \hat{\Delta}}{\partial a} & =u\left(t_{B}\right)-u\left(t_{S}(a)\right)-(a-\sigma) u^{\prime}\left(t_{S}(a)\right) \frac{\partial t_{S}(a)}{\partial a}+\frac{\partial t_{S}(a)}{\partial a} \\
& =u\left(t_{B}\right)-u\left(t_{S}(a)\right)<0
\end{aligned}
$$

So S strictly dominates C for all $a_{S}<a$.
To compare home utility from actions S and D, define for $a_{S} \leq a$:

$$
\begin{aligned}
\bar{\Delta}(a)= & U\left(S \mid t_{S}(a), a\right)-U\left(D \mid t_{D}(a), a\right) \\
= & a u\left(t_{S}(a)\right)-t_{S}(a)-\sigma L^{*}\left(t_{S}(a)\right) \\
& -a u\left(t_{D}(a)\right)+t_{D}(a)+\delta F\left(\alpha_{D}\right)\left(\beta \chi_{C}-\chi_{N}\right) \\
\text { So: } \quad \frac{\partial \bar{\Delta}}{\partial a}= & (a-\sigma) u^{\prime}\left(t_{S}(a)\right) \frac{\partial t_{S}(a)}{\partial a}-\frac{\partial t_{S}(a)}{\partial a}+u\left(t_{S}(a)\right) \\
& +\frac{\partial t_{D}(a)}{\partial a}-a u^{\prime}\left(t_{D}(a)\right) \frac{\partial t_{D}(a)}{\partial a}-u\left(t_{D}(a)\right) \\
= & u\left(t_{S}(a)\right)-u\left(t_{D}(a)\right)<0
\end{aligned}
$$

So D strictly dominates S for sufficiently large values of a.
Indifference point a_{D} is implicitly defined by:

$$
\begin{aligned}
\lambda= & a_{D}\left[u\left(t_{S}\left(a_{D}\right)\right)-u\left(t_{D}\left(a_{D}\right)\right)\right]+t_{D}\left(a_{D}\right)-t_{S}\left(a_{D}\right) \\
& -\sigma L^{*}\left(t_{S}\left(a_{D}\right)\right)+\delta F\left(\alpha_{D}\right)\left(\beta \chi_{C}-\chi_{N}\right)=0
\end{aligned}
$$

The equilibrium exists iff: $\bar{\Delta}\left(a_{S}\right)>0$.

Foreign

The foreign country's expected utility from actions C, S, and D given tariff levels above are:

$$
\begin{aligned}
U^{*}\left(C \mid \tau_{B}(\alpha), \alpha\right)= & \alpha u\left(\tau_{B}(\alpha)\right)-\tau_{B}(\alpha)-\int u(t(a)) d H(a)+\int_{a_{S}}^{a_{D}} \sigma L^{*}(t(a)) d H(a) \\
& +H\left(a_{D}\right) \delta \beta \chi_{C}^{*}+\left[1-H\left(a_{D}\right)\right] \delta \chi_{N}^{*} \\
U^{*}\left(S \mid \tau_{S}(\alpha), \alpha\right)= & \alpha u\left(\tau_{S}(\alpha)\right)-\tau_{S}(\alpha)-\sigma L\left(\tau_{S}(\alpha)\right)-\int u(t(a)) d H(a)+\int_{a_{S}}^{a_{D}} \sigma L^{*}(t(a)) d H(a) \\
& +H\left(a_{D}\right) \delta \beta \chi_{C}^{*}+\left[1-H\left(a_{D}\right)\right] \delta \chi_{N}^{*} \\
U^{*}\left(D \mid \tau_{D}(\alpha), \alpha\right)= & \alpha u\left(\tau_{D}(\alpha)\right)-\tau_{D}(\alpha)-\int u(t(a)) d H(a)+\int_{a_{S}}^{a_{D}} \sigma L^{*}(t(a)) d H(a)+\delta \chi_{N}^{*}
\end{aligned}
$$

To compare foreign utility from actions C and S, define for $\alpha_{S} \leq \alpha$:

$$
\begin{aligned}
\hat{\Delta}^{*}(\alpha) & =U^{*}\left(C \mid \tau_{B}(\alpha), \alpha\right)-U^{*}\left(S \mid \tau_{S}(\alpha), \alpha\right) \\
& =\alpha u\left(\tau_{B}\right)-\tau_{B}-\alpha u\left(\tau_{S}(\alpha)\right)+\tau_{S}(\alpha)+\sigma L\left(\tau_{S}(\alpha)\right)
\end{aligned}
$$

Note that $\tau_{S}\left(\alpha_{S}\right)=\tau_{B}$, so $\hat{\Delta}^{*}\left(\alpha_{S}\right)=0$. Also:

$$
\begin{aligned}
\frac{\partial \hat{\Delta}^{*}}{\partial \alpha} & =u\left(\tau_{B}\right)-u\left(\tau_{S}(\alpha)\right)-(\alpha-\sigma) u^{\prime}\left(\tau_{S}(\alpha)\right) \frac{\partial \tau_{S}(\alpha)}{\partial \alpha}+\frac{\partial \tau_{S}(\alpha)}{\partial \alpha} \\
& =u\left(\tau_{B}\right)-u\left(\tau_{S}(\alpha)\right)<0
\end{aligned}
$$

So S strictly dominates C for all $\alpha_{S}<\alpha$.
To compare foreign utility from actions S and D, define for $\alpha_{S} \leq \alpha$:

$$
\begin{aligned}
& \bar{\Delta}^{*}(\alpha)= U^{*}\left(S \mid \tau_{S}(\alpha), \alpha\right)-U^{*}\left(D \mid \tau_{D}(\alpha), \alpha\right) \\
&= \alpha u\left(\tau_{S}(\alpha)\right)-\tau_{S}(\alpha)-\sigma L\left(\tau_{S}(\alpha)\right) \\
&-\alpha u\left(\tau_{D}(\alpha)\right)+\tau_{D}(\alpha)+\delta H\left(a_{D}\right)\left(\beta \chi_{C}^{*}-\chi_{N}^{*}\right) \\
& \text { So: } \quad \frac{\partial \bar{\Delta}^{*}=}{\partial \alpha}=(\alpha-\sigma) u^{\prime}\left(\tau_{S}(\alpha)\right) \frac{\partial \tau_{S}(\alpha)}{\partial \alpha}-\frac{\partial \tau_{S}(\alpha)}{\partial \alpha}+u\left(\tau_{S}(\alpha)\right) \\
&+\frac{\partial \tau_{D}(\alpha)}{\partial \alpha}-\alpha u^{\prime}\left(\tau_{D}(\alpha)\right) \frac{\partial \tau_{D}(\alpha)}{\partial \alpha}-u\left(\tau_{D}(\alpha)\right) \\
&= u\left(\tau_{S}(\alpha)\right)-u\left(\tau_{D}(\alpha)\right)<0
\end{aligned}
$$

So D strictly dominates S for sufficiently large values of α.

Indifference point α_{D} is implicitly defined by:

$$
\begin{aligned}
\lambda^{*}= & \alpha_{D}\left[u\left(\tau_{S}\left(\alpha_{D}\right)\right)-u\left(\tau_{D}\left(\alpha_{D}\right)\right)\right]+\tau_{D}\left(\alpha_{D}\right)-\tau_{S}\left(\alpha_{D}\right) \\
& -\sigma L\left(\tau_{S}\left(\alpha_{D}\right)\right)+\delta H\left(a_{D}\right)\left(\beta \chi_{C}^{*}-\chi_{N}^{*}\right)=0
\end{aligned}
$$

The equilibrium exists iff: $\bar{\Delta}^{*}\left(\alpha_{S}\right)>0$.

2.3 Continuation Values

Let $t_{E}(a)$ and $\tau_{E}(\alpha)$ denote equilibrium tariffs of the home and foreign country, respectively, when the institution is in place.

If the institution does not exist, then the home and foreign country choose $t_{D}(a)$ and $\tau_{D}(\alpha)$ in every time period. This yields anarchy continuation payoffs:

$$
\begin{aligned}
\chi_{N} & =\frac{1}{1-\delta}\left\{\int\left[a u\left(t_{D}(a)\right)-t_{D}(a)\right] d H(a)-\int u\left(\tau_{D}(\alpha)\right) d F(\alpha)\right\} \\
\chi_{N}^{*} & =\frac{1}{1-\delta}\left\{\int\left[\alpha u\left(\tau_{D}(\alpha)\right)-\tau_{D}(\alpha)\right] d F(\alpha)-\int u\left(t_{D}(a)\right) d H(a)\right\}
\end{aligned}
$$

Home

The continuation payoff for home from the treaty being in effect is:

$$
\begin{aligned}
\chi_{C}= & \int\left[a u\left(t_{E}(a)\right)-t_{E}(a)\right] d H(a)-\sigma \int_{a_{S}}^{a_{D}} L^{*}\left(t_{E}(a)\right) d H(a)-\int u\left(\tau_{E}(\alpha)\right) d F(\alpha) \\
& +\sigma \int_{\alpha_{S}}^{\alpha_{D}} L\left(\tau_{E}(\alpha)\right) d F(\alpha)+\delta H\left(a_{D}\right) F\left(\alpha_{D}\right) \beta \chi_{C}+\delta\left[1-H\left(a_{D}\right) F\left(\alpha_{D}\right)\right] \chi_{N} \\
= & \frac{\Psi}{1-\delta \beta H\left(a_{D}\right) F\left(\alpha_{D}\right)} \\
\text { where } \Psi= & \int\left[a u\left(t_{E}(a)\right)-t_{E}(a)\right] d H(a)-\sigma \int_{a_{S}}^{a_{D}} L^{*}\left(t_{E}(a)\right) d H(a)-\int u\left(\tau_{E}(\alpha)\right) d F(\alpha) \\
& +\sigma \int_{\alpha_{S}}^{\alpha_{D}} L\left(\tau_{E}(\alpha)\right) d F(\alpha)+\delta\left[1-H\left(a_{D}\right) F\left(\alpha_{D}\right)\right] \chi_{N}
\end{aligned}
$$

Foreign

The continuation payoff for foreign from the treaty being in effect is:

$$
\begin{aligned}
\chi_{C}^{*}= & \int\left[\alpha u\left(\tau_{E}(\alpha)\right)-\tau_{E}(\alpha)\right] d F(\alpha)-\sigma \int_{\alpha_{S}}^{\alpha_{D}} L\left(\tau_{E}(\alpha)\right) d F(\alpha)-\int u\left(t_{E}(a)\right) d H(a) \\
& +\sigma \int_{a_{S}}^{a_{D}} L^{*}\left(t_{E}(a)\right) d H(a)+\delta H\left(a_{D}\right) F\left(\alpha_{D}\right) \beta \chi_{C}^{*}+\delta\left[1-H\left(a_{D}\right) F\left(\alpha_{D}\right)\right] \chi_{N}^{*} \\
= & \frac{\Psi^{*}}{1-\delta \beta H\left(a_{D}\right) F\left(\alpha_{D}\right)} \\
\text { where } \quad \Psi^{*}= & \int\left[\alpha u\left(\tau_{E}(\alpha)\right)-\tau_{E}(\alpha)\right] d F(\alpha)-\sigma \int_{\alpha_{S}}^{\alpha_{D}} L\left(\tau_{E}(\alpha)\right) d F(\alpha)-\int u\left(t_{E}(a)\right) d H(a) \\
& +\sigma \int_{a_{S}}^{a_{D}} L^{*}\left(t_{E}(a)\right) d H(a)+\delta\left[1-H\left(a_{D}\right) F\left(\alpha_{D}\right)\right] \chi_{N}^{*}
\end{aligned}
$$

2.4 Comparative Statics

Full Compliance

Recall that the home country does not violate its binding if $a \leq a_{S}=\frac{1}{u^{\prime}\left(t_{B}\right)}+\sigma$.

$$
\frac{\partial a_{S}}{\partial t_{B}}=\frac{-u^{\prime \prime}\left(t_{B}\right)}{\left[u^{\prime}\left(t_{B}\right)\right]^{2}}>0 \quad \text { and } \quad \frac{\partial a_{S}}{\partial \sigma}=1>0
$$

Recall that the foreign country does not violate its binding if $\alpha \leq \alpha_{S}=\frac{1}{u^{\prime}\left(\tau_{B}\right)}+\sigma$.

$$
\frac{\partial \alpha_{S}}{\partial \tau_{B}}=\frac{-u^{\prime \prime}\left(\tau_{B}\right)}{\left[u^{\prime}\left(\tau_{B}\right)\right]^{2}}>0 \quad \text { and } \quad \frac{\partial \alpha_{S}}{\partial \sigma}=1>0
$$

Stability

The cutpoints $\left(a_{D}, \alpha_{D}\right)$ are implicitly defined by the system of equations:

$$
\begin{aligned}
\lambda\left(a_{D}, \alpha_{D}\right) & =0 \\
\lambda^{*}\left(a_{D}, \alpha_{D}\right) & =0
\end{aligned}
$$

By Cramer's Rule:

$$
\frac{\partial a_{D}}{\partial t_{B}}=\frac{\left|\begin{array}{cc}
-\lambda_{t_{B}} & \lambda_{\alpha_{D}} \\
-\lambda_{t_{B}}^{*} & \lambda_{\alpha_{D}}^{*}
\end{array}\right|}{\left|\begin{array}{ll}
\lambda_{a_{D}} & \lambda_{\alpha_{D}} \\
\lambda_{a_{D}}^{*} & \lambda_{\alpha_{D}}^{*}
\end{array}\right|} \text { and } \frac{\partial a_{D}}{\partial \sigma}=\frac{\left|\begin{array}{cc}
-\lambda_{\sigma} & \lambda_{\alpha_{D}} \\
-\lambda_{\sigma}^{*} & \lambda_{\alpha_{D}}^{*}
\end{array}\right|}{\left|\begin{array}{cc}
\lambda_{a_{D}} & \lambda_{\alpha_{D}} \\
\lambda_{a_{D}}^{*} & \lambda_{\alpha_{D}}^{*}
\end{array}\right|}
$$

$$
\frac{\partial \alpha_{D}}{\partial \tau_{B}}=\frac{\left|\begin{array}{cc}
-\lambda_{\tau_{B}} & \lambda_{a_{D}} \\
-\lambda_{\tau_{B}}^{*} & \lambda_{a_{D}}^{*}
\end{array}\right|}{\left|\begin{array}{ll}
\lambda_{\alpha_{D}} & \lambda_{a_{D}} \\
\lambda_{\alpha_{D}}^{*} & \lambda_{a_{D}}^{*}
\end{array}\right|} \text { and } \frac{\partial \alpha_{D}}{\partial \sigma}=\frac{\left|\begin{array}{cc}
-\lambda_{\sigma} & \lambda_{a_{D}} \\
-\lambda_{\sigma}^{*} & \lambda_{a_{D}}^{*}
\end{array}\right|}{\left|\begin{array}{ll}
\lambda_{\alpha_{D}} & \lambda_{a_{D}} \\
\lambda_{\alpha_{D}}^{*} & \lambda_{a_{D}}^{*}
\end{array}\right|}
$$

where:

$$
\begin{aligned}
\lambda_{a_{D}} & =u\left(t_{S}\left(a_{D}\right)\right)-u\left(t_{D}\left(a_{D}\right)\right)+\delta F\left(\alpha_{D}\right) \beta \frac{\partial \chi_{C}}{\partial a_{D}} \\
\lambda_{\alpha_{D}} & =\delta F\left(\alpha_{D}\right) \beta\left(\frac{\partial \chi_{C}}{\partial \alpha_{D}}\right)+\delta f\left(\alpha_{D}\right)\left(\beta \chi_{C}-\chi_{N}\right) \\
\lambda_{t_{B}} & =\sigma u^{\prime}\left(t_{B}\right)+\delta F\left(\alpha_{D}\right) \beta\left(\frac{\partial \chi_{C}}{\partial t_{B}}\right) \\
\lambda_{\tau_{B}} & =\delta F\left(\alpha_{D}\right) \beta\left(\frac{\partial \chi_{C}}{\partial \tau_{B}}\right) \\
\lambda_{\sigma} & =-L^{*}\left(t_{S}\left(a_{D}\right)\right)+\delta F\left(\alpha_{D}\right) \beta \frac{\partial \chi_{C}}{\partial \sigma} \\
\lambda_{a_{D}}^{*} & =\delta H\left(a_{D}\right) \beta\left(\frac{\partial \chi_{C}^{*}}{\partial a_{D}}\right)+\delta h\left(a_{D}\right)\left(\beta \chi_{C}^{*}-\chi_{N}^{*}\right) \\
\lambda_{\alpha_{D}}^{*} & =u\left(\tau_{S}\left(\alpha_{D}\right)\right)-u\left(\tau_{D}\left(\alpha_{D}\right)\right)+\delta H\left(a_{D}\right) \beta \frac{\partial \chi_{C}^{*}}{\partial \alpha_{D}} \\
\lambda_{t_{B}}^{*} & =\delta H\left(a_{D}\right) \beta\left(\frac{\partial \chi_{C}^{*}}{\partial t_{B}}\right) \\
\lambda_{\tau_{B}}^{*} & =\sigma u^{\prime}\left(\tau_{B}\right)+\delta H\left(a_{D}\right) \beta \frac{\partial \chi_{C}^{*}}{\partial \tau_{B}} \\
\lambda_{\sigma}^{*} & =-L\left(\tau_{S}\left(\alpha_{D}\right)\right)+\delta H\left(a_{D}\right) \beta \frac{\partial \chi_{C}^{*}}{\partial \sigma}
\end{aligned}
$$

Comparative statics on a_{D}
As $h\left(a_{D}\right), H\left(a_{D}\right), f\left(\alpha_{D}\right), F\left(\alpha_{D}\right)$ grow small:

$$
\begin{aligned}
\left|\begin{array}{cc}
\lambda_{a_{D}} & \lambda_{\alpha_{D}} \\
\lambda_{a_{D}}^{*} & \lambda_{\alpha_{D}}^{*}
\end{array}\right|= & \lambda_{a_{D}} \lambda_{\alpha_{D}}^{*}-\lambda_{\alpha_{D}} \lambda_{a_{D}}^{*} \\
= & {\left[u\left(t_{S}\left(a_{D}\right)\right)-u\left(t_{D}\left(a_{D}\right)\right)+\delta F\left(\alpha_{D}\right) \beta \frac{\partial \chi_{C}}{\partial a_{D}}\right] \times\left[u\left(\tau_{S}\left(\alpha_{D}\right)\right)-u\left(\tau_{D}\left(\alpha_{D}\right)\right)+\delta H\left(a_{D}\right) \beta \frac{\partial \chi_{C}^{*}}{\partial \alpha_{D}}\right] } \\
& -\left[\delta F\left(\alpha_{D}\right) \beta\left(\frac{\partial \chi_{C}}{\partial \alpha_{D}}\right)+\delta f\left(\alpha_{D}\right)\left(\beta \chi_{C}-\chi_{N}\right)\right] \times\left[\delta H\left(a_{D}\right) \beta\left(\frac{\partial \chi_{C}^{*}}{\partial a_{D}}\right)+\delta h\left(a_{D}\right)\left(\beta \chi_{C}^{*}-\chi_{N}^{*}\right)\right] \\
\rightarrow & {\left[u\left(t_{S}\left(a_{D}\right)\right)-u\left(t_{D}\left(a_{D}\right)\right)\right] \times\left[u\left(\tau_{S}\left(\alpha_{D}\right)\right)-u\left(\tau_{D}\left(\alpha_{D}\right)\right)\right]>0 }
\end{aligned}
$$

$$
\begin{aligned}
\left|\begin{array}{cc}
-\lambda_{t_{B}} & \lambda_{\alpha_{D}} \\
-\lambda_{t_{B}}^{*} & \lambda_{\alpha_{D}}^{*}
\end{array}\right|= & -\lambda_{t_{B}} \lambda_{\alpha_{D}}^{*}+\lambda_{\alpha_{D}} \lambda_{t_{B}}^{*} \\
= & -\left[\sigma u^{\prime}\left(t_{B}\right)+\delta F\left(\alpha_{D}\right) \beta\left(\frac{\partial \chi_{C}}{\partial t_{B}}\right)\right] \times\left[u\left(\tau_{S}\left(\alpha_{D}\right)\right)-u\left(\tau_{D}\left(\alpha_{D}\right)\right)+\delta H\left(a_{D}\right) \beta \frac{\partial \chi_{C}^{*}}{\partial \alpha_{D}}\right] \\
& +\left[\delta F\left(\alpha_{D}\right) \beta\left(\frac{\partial \chi_{C}}{\partial \alpha_{D}}\right)+\delta f\left(\alpha_{D}\right)\left(\beta \chi_{C}-\chi_{N}\right)\right] \times\left[\delta H\left(a_{D}\right) \beta\left(\frac{\partial \chi_{C}^{*}}{\partial t_{B}}\right)\right] \\
\rightarrow & -\sigma u^{\prime}\left(t_{B}\right)\left[u\left(\tau_{S}\left(\alpha_{D}\right)\right)-u\left(\tau_{D}\left(\alpha_{D}\right)\right)\right]>0 \\
\left|\begin{array}{cc}
-\lambda_{\sigma} & \lambda_{\alpha_{D}} \\
-\lambda_{\sigma}^{*} & \lambda_{\alpha_{D}}^{*}
\end{array}\right|= & -\lambda_{\sigma} \lambda_{\alpha_{D}}^{*}+\lambda_{\alpha_{D}} \lambda_{\sigma}^{*} \\
= & -\left[-L^{*}\left(t_{S}\left(a_{D}\right)\right)+\delta F\left(\alpha_{D}\right) \beta \frac{\partial \chi_{C}}{\partial \sigma}\right] \times\left[u\left(\tau_{S}\left(\alpha_{D}\right)\right)-u\left(\tau_{D}\left(\alpha_{D}\right)\right)+\delta H\left(a_{D}\right) \beta \frac{\partial \chi_{C}^{*}}{\partial \alpha_{D}}\right] \\
& +\left[\delta F\left(\alpha_{D}\right) \beta\left(\frac{\partial \chi_{C}}{\partial \alpha_{D}}\right)+\delta f\left(\alpha_{D}\right)\left(\beta \chi_{C}-\chi_{N}\right)\right] \times\left[-L\left(\tau_{S}\left(\alpha_{D}\right)\right)+\delta H\left(a_{D}\right) \beta \frac{\partial \chi_{C}^{*}}{\partial \sigma}\right] \\
\rightarrow & L^{*}\left(t_{S}\left(a_{D}\right)\right)\left[u\left(\tau_{S}\left(\alpha_{D}\right)\right)-u\left(\tau_{D}\left(\alpha_{D}\right)\right)\right]<0
\end{aligned}
$$

So:

$$
\begin{aligned}
\frac{\partial a_{D}}{\partial t_{B}}=\frac{\left|\begin{array}{cc}
-\lambda_{t_{B}} & \lambda_{\alpha_{D}} \\
-\lambda_{t_{B}}^{*} & \lambda_{\alpha_{D}}^{*}
\end{array}\right|}{\left|\begin{array}{cc}
\lambda_{a_{D}} & \lambda_{\alpha_{D}} \\
\lambda_{a_{D}}^{*} & \lambda_{\alpha_{D}}^{*}
\end{array}\right|} \rightarrow \frac{-\sigma u^{\prime}\left(t_{B}\right)\left[u\left(\tau_{S}\left(\alpha_{D}\right)\right)-u\left(\tau_{D}\left(\alpha_{D}\right)\right)\right]}{\left[u\left(t_{S}\left(a_{D}\right)\right)-u\left(t_{D}\left(a_{D}\right)\right)\right] \times\left[u\left(\tau_{S}\left(\alpha_{D}\right)\right)-u\left(\tau_{D}\left(\alpha_{D}\right)\right)\right]}>0 \\
\frac{\partial a_{D}}{\partial \sigma}=\frac{\left|\begin{array}{cc}
-\lambda_{\sigma} & \lambda_{\alpha_{D}} \\
-\lambda_{\sigma}^{*} & \lambda_{\alpha_{D}}^{*}
\end{array}\right|}{\left|\begin{array}{ll}
\lambda_{a_{D}} & \lambda_{\alpha_{D}} \\
\lambda_{a_{D}}^{*} & \lambda_{\alpha_{D}}^{*}
\end{array}\right|} \rightarrow \frac{L^{*}\left(t_{S}\left(a_{D}\right)\right)\left[u\left(\tau_{S}\left(\alpha_{D}\right)\right)-u\left(\tau_{D}\left(\alpha_{D}\right)\right)\right]}{\left[u\left(t_{S}\left(a_{D}\right)\right)-u\left(t_{D}\left(a_{D}\right)\right)\right] \times\left[u\left(\tau_{S}\left(\alpha_{D}\right)\right)-u\left(\tau_{D}\left(\alpha_{D}\right)\right)\right]}<0
\end{aligned}
$$

Comparative Statics on α_{D}
As $h\left(a_{D}\right), H\left(a_{D}\right), f\left(\alpha_{D}\right), F\left(\alpha_{D}\right)$ grow small:

$$
\begin{aligned}
\left|\begin{array}{ll}
\lambda_{\alpha_{D}} & \lambda_{a_{D}} \\
\lambda_{\alpha_{D}}^{*} & \lambda_{a_{D}}^{*}
\end{array}\right|= & \lambda_{\alpha_{D}} \lambda_{a_{D}}^{*}-\lambda_{a_{D}} \lambda_{\alpha_{D}}^{*} \\
= & {\left[\delta F\left(\alpha_{D}\right) \beta\left(\frac{\partial \chi_{C}}{\partial \alpha_{D}}\right)+\delta f\left(\alpha_{D}\right)\left(\beta \chi_{C}-\chi_{N}\right)\right] \times\left[\delta H\left(a_{D}\right) \beta\left(\frac{\partial \chi_{C}^{*}}{\partial a_{D}}\right)+\delta h\left(a_{D}\right)\left(\beta \chi_{C}^{*}-\chi_{N}^{*}\right)\right] } \\
& -\left[u\left(t_{S}\left(a_{D}\right)\right)-u\left(t_{D}\left(a_{D}\right)\right)+\delta F\left(\alpha_{D}\right) \beta \frac{\partial \chi_{C}}{\partial a_{D}}\right] \times\left[u\left(\tau_{S}\left(\alpha_{D}\right)\right)-u\left(\tau_{D}\left(\alpha_{D}\right)\right)+\delta H\left(a_{D}\right) \beta \frac{\partial \chi_{C}^{*}}{\partial \alpha_{D}}\right] \\
\rightarrow & -\left[u\left(t_{S}\left(a_{D}\right)\right)-u\left(t_{D}\left(a_{D}\right)\right)\right] \times\left[u\left(\tau_{S}\left(\alpha_{D}\right)\right)-u\left(\tau_{D}\left(\alpha_{D}\right)\right)\right]<0
\end{aligned}
$$

$$
\begin{aligned}
\left|\begin{array}{cc}
-\lambda_{\tau_{B}} & \lambda_{a_{D}} \\
-\lambda_{\tau_{B}}^{*} & \lambda_{a_{D}}^{*}
\end{array}\right|= & -\lambda_{\tau_{B}} \lambda_{a_{D}}^{*}+\lambda_{a_{D}} \lambda_{\tau_{B}}^{*} \\
= & -\delta F\left(\alpha_{D}\right) \beta\left(\frac{\partial \chi_{C}}{\partial \tau_{B}}\right) \times\left[\delta H\left(a_{D}\right) \beta\left(\frac{\partial \chi_{C}^{*}}{\partial a_{D}}\right)+\delta h\left(a_{D}\right)\left(\beta \chi_{C}^{*}-\chi_{N}^{*}\right)\right] \\
& +\left[u\left(t_{S}\left(a_{D}\right)\right)-u\left(t_{D}\left(a_{D}\right)\right)+\delta F\left(\alpha_{D}\right) \beta \frac{\partial \chi_{C}}{\partial a_{D}}\right] \times\left[\sigma u^{\prime}\left(\tau_{B}\right)+\delta H\left(a_{D}\right) \beta \frac{\partial \chi_{C}^{*}}{\partial \tau_{B}}\right] \\
\rightarrow & \sigma u^{\prime}\left(\tau_{B}\right)\left[u\left(t_{S}\left(a_{D}\right)\right)-u\left(t_{D}\left(a_{D}\right)\right)\right]<0 \\
\left|\begin{array}{cc}
-\lambda_{\sigma} & \lambda_{a_{D}} \\
-\lambda_{\sigma}^{*} & \lambda_{a_{D}}^{*}
\end{array}\right|= & -\lambda_{\sigma} \lambda_{a_{D}}^{*}+\lambda_{a_{D}} \lambda_{\sigma}^{*} \\
= & -\left[-L^{*}\left(t_{S}\left(a_{D}\right)\right)+\delta F\left(\alpha_{D}\right) \beta \frac{\partial \chi_{C}}{\partial \sigma}\right] \times\left[\delta H\left(a_{D}\right) \beta\left(\frac{\partial \chi_{C}^{*}}{\partial a_{D}}\right)+\delta h\left(a_{D}\right)\left(\beta \chi_{C}^{*}-\chi_{N}^{*}\right)\right] \\
& +\left[u\left(t_{S}\left(a_{D}\right)\right)-u\left(t_{D}\left(a_{D}\right)\right)+\delta F\left(\alpha_{D}\right) \beta \frac{\partial \chi_{C}}{\partial a_{D}}\right] \times\left[-L\left(\tau_{S}\left(\alpha_{D}\right)\right)+\delta H\left(a_{D}\right) \beta \frac{\partial \chi_{C}^{*}}{\partial \sigma}\right] \\
\rightarrow & -L\left(\tau_{S}\left(\alpha_{D}\right)\right)\left[u\left(t_{S}\left(a_{D}\right)\right)-u\left(t_{D}\left(a_{D}\right)\right)\right]>0
\end{aligned}
$$

So:

$$
\frac{\partial \alpha_{D}}{\partial \tau_{B}}=\frac{\left|\begin{array}{cc}
-\lambda_{\tau_{B}} & \lambda_{a_{D}} \\
-\lambda_{\tau_{B}}^{*} & \lambda_{a_{D}}^{*}
\end{array}\right|}{\left|\begin{array}{cc}
\lambda_{\alpha_{D}} & \lambda_{a_{D}}^{*} \\
\lambda_{\alpha_{D}}^{*} & \lambda_{a_{D}}^{*}
\end{array}\right|} \rightarrow \frac{\sigma u^{\prime}\left(\tau_{B}\right)\left[u\left(t_{S}\left(a_{D}\right)\right)-u\left(t_{D}\left(a_{D}\right)\right)\right]}{-\left[u\left(t_{S}\left(a_{D}\right)\right)-u\left(t_{D}\left(a_{D}\right)\right)\right] \times\left[u\left(\tau_{S}\left(\alpha_{D}\right)\right)-u\left(\tau_{D}\left(\alpha_{D}\right)\right)\right]}>0
$$

So:

$$
\frac{\partial \alpha_{D}}{\partial \sigma}=\frac{\left|\begin{array}{cc}
-\lambda_{\sigma} & \lambda_{a_{D}} \\
-\lambda_{\sigma}^{*} & \lambda_{a_{D}}^{*}
\end{array}\right|}{\left|\begin{array}{ll}
\lambda_{\alpha_{D}} & \lambda_{a_{D}} \\
\lambda_{\alpha_{D}}^{*} & \lambda_{a_{D}}^{*}
\end{array}\right|} \rightarrow \frac{-L\left(\tau_{S}\left(\alpha_{D}\right)\right)\left[u\left(t_{S}\left(a_{D}\right)\right)-u\left(t_{D}\left(a_{D}\right)\right)\right]}{-\left[u\left(t_{S}\left(a_{D}\right)\right)-u\left(t_{D}\left(a_{D}\right)\right)\right] \times\left[u\left(\tau_{S}\left(\alpha_{D}\right)\right)-u\left(\tau_{D}\left(\alpha_{D}\right)\right)\right]}<0
$$

