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Theory

A.1 Proofs for Results in the Paper

We assume that each player i’s type in period t, αit, is independently and identically distributed
across players and time. Additionally, we assume that the common distribution function F has full
support on interval [αL, αH ], where 0 ≤ αL < c

τi
< αH for every i.

Let ρ−i denote player i’s belief about the probability that no other player will submit the dispute
to the WTO, and hence that the game will proceed to period t + 1. Let Vi denote player i’s
continuation value—her ex ante expected utility from playing the game. Because type αit, is
independently and identically distributed across time, neither ρ−i nor Vi are a function of time.

Given the per period payoffs defined in the paper and conditional on reaching period t, player i’s
expected utility functions in period t are:

EUit (file|αit, τi) =
δ

1− δ
(r + b) τi − c

EUit (don’t file|αit, τi) = −αitτi + (1− ρ−i)
δ

1− δ
rτi + ρ−iδVi

Equilibrium Behavior

Proof of Proposition 1. Player i has incentive to file iff:

δ

1− δ
(r + b) τi − c ≥ −αitτi + (1− ρ−i)

δ

1− δ
rτi + ρ−iδVi

⇔ αit ≥
c

τi
− δ

1− δ
b− ρ−i

δ

1− δ
r +

δρ−i
τi

Vi ≡ αi (1)

Equilibrium behavior is therefore monotonic: high types (αit > αi) will file, and low types (αit < αi)
will not file. So player i’s best response function can be characterized by the value of αi defined in
equation (1).

Let ρi denote the ex ante probability that player i does not file in a given time period. Then:

ρi = Pr (αit < αi) = F (αi)
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Let ρ denote the ex ante probability that no player files in a given time period, and ρ−i denote the
ex ante probability that no player besides i files in a given time period (per the description above).
Then:

ρ =

n∏
k=1

ρk =

n∏
k=1

F (αk) and ρ−i =
∏
j 6=i

ρj =

∏n
k=1 F (αk)

F (αi)
=

ρ

ρi

Also note that ρ = ρiρ−i.

In an interior equilibrium—an equilibrium in which αi ∈ [αL, αH ] for all i—player i’s continuation
value is therefore:

Vi =

αi∫
αL

[
−ατi + (1− ρ−i)

δ

1− δ
rτi + ρ−iδVi

]
f (α) dα+

αH∫
αi

[
δ

1− δ
(r + b) τi − c

]
f (α) dα

= ρi

[
(1− ρ−i)

δ

1− δ
rτi + ρ−iδVi

]
+ (1− ρi)

[
δ

1− δ
(r + b) τi − c

]
− τi

αi∫
αL

αf (α) dα (2)

Manipulating equation (2) to isolate Vi yields:

Vi =
1

1− δρ

(1− ρ)
δ

1− δ
rτi − (1− ρi)

(
c− δ

1− δ
bτi

)
− τi

αi∫
αL

αf (α) dα

 (3)

Substituting equation (3) into equation (1) yields:

αi =
c

τi
− δ

1− δ
b− ρ−i

δ

1− δ
r

+
δρ−i

τi (1− δρ)

(1− ρ)
δ

1− δ
rτi − (1− ρi)

(
c− δ

1− δ
bτi

)
− τi

αi∫
αL

αf (α) dα

 (4)

If we manipulate equation (4), we can see that cutpoint αi is implicitly defined by the following
function:

Ψi ≡ αi (1− δρ)− (1− δρ−i)
(
c

τi
− δ

1− δ
b

)
+ δρ−i

r +

αi∫
αL

αf (α) dα

 = 0 (5)

To see that this function can generate an interior equilibrium, note that:

Ψi
αi = αi [−δρ−if (αi)] + (1− δρ) + δρ−iαif (αi) = 1− δρ > 0

Because Ψi is strictly increasing in αi, if there exists a value αi that satisfies Ψi (αi) = 0, this value
is unique. Consider the value of function Ψi in the limit as δ becomes arbitrarily small:

lim
δ→0

Ψi = αi −
c

τi
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We can therefore identify the equilibrium cutpoint as δ becomes arbitrarily small:

lim
δ→0

Ψi = 0 ⇔ lim
δ→0

αi =
c

τi

Recall that by assumption, c
τi
∈ (αL, αH) for every i and α has full support over [αL, αH ]. So

player i has a unique interior cutpoint, αi ∈ (αL, αH), for small δ > 0.

Since this argument holds for an arbitrary player i, there exists a Bayesian Nash equilibrium in
which equilibrium strategies are implicitly defined by the system of n equations with n endogenous
variables α = (α1, α2, . . . αn):

Ψ1 (α) = 0

Ψ2 (α) = 0

. . . . . . . . .

Ψn (α) = 0

Intermediate Results

Note that Ψi is continuously differentiable in all of its arguments. In particular,

Ψi
αi = αi [−δρ−if (αi)] + (1− δρ) + δρ−iαif (αi) = 1− δρ > 0

Note that: limδ→0 Ψi
αi

= 1.

By manipulating equation (5) and using substitutions for the ρ-values, we can show that:

Ψi = αi (1− δρjρ−j)−
(
c

τi
− δ

1− δ
b

)
+ δ

(
ρjρ−j
ρi

) c

τi
− δ

1− δ
b+ r +

αi∫
αL

αf (α) dα


This allows us to see that the derivative of Ψi with respect to αj (for j 6= i) is:

Ψi
αj = αi [−δf (αj) ρ−j ] + δf (αj)

(
ρ−j
ρi

) c

τi
− δ

1− δ
b+ r +

αi∫
αL

αf (α) dα


= δf (αj) ρ−j

( 1

ρi

) c

τi
− δ

1− δ
b+ r +

αi∫
αL

αf (α) dα

− αi


= δf (αj)
ρ

ρiρj

 c

τi
− δ

1− δ
b+ r +

αi∫
αL

αf (α) dα− αiρi


Note that: limδ→0 Ψi

αj
= 0.
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Other useful derivatives are:

∂Ψi

∂τi
= (1− δρ−i)

c

τ2i
and

∂Ψi

∂r
= δρ−i and

∂Ψi

∂τj
= 0

Define the Jacobian matrix as:

J =

 Ψ1
α1

. . . Ψ1
αn

. . . . . . . . .
Ψn
α1

. . . Ψn
αn


Note that each entry in matrix J approaches either 0 or 1 in the limit as δ approaches 0. So in the
limit, matrix J approaches the identity matrix, I:

lim
δ→0

J =

 1 . . . 0
. . . . . . . . .
0 . . . 1

 = I

So the Jacobian matrix is nonsingular in the limit because det(I) = 1 6= 0. This ensures that we
can derive comparative statics using the implicit function theorem.

Additionally, we can prove the following intermediate result:

Lemma 1. In equilibrium, αi <
c
τi
.

Proof of Lemma 1. By the derivations above, Ψi
αi
> 0. Note that:

Ψi

(
αi =

c

τi

)
= δρ−i (1− ρi)

c

τi
+ (1− δρ−i)

δ

1− δ
b+ δρ−i

r +

c
τi∫

αL

αf (α) dα

 > 0

So the equilibrium value of αi that solves Ψi (αi) = 0 must be less than c
τi

.

General Comparative Statics

Proposition 2: When its own trade stake (τi) increases, player i is more likely to file in any given
period.

Proof of Proposition 2. Because the indexing of players is arbitrary, we solve for the impact of τ1
on α1. By the implicit function theorem:

∂α1

∂τ1
=
−det(B)

det(J)
where B =


Ψ1
τ1 Ψ1

α2
. . . Ψ1

αn
Ψ2
τ1 Ψ2

α2
. . . Ψ2

αn
. . . . . . . . . . . .
Ψn
τ1 Ψn

α2
. . . Ψn

αn


Then the transpose of B, which is denoted by BT, is:

BT =


Ψ1
τ1 0 . . . 0

Ψ1
α2

Ψ2
α2

. . . Ψn
α2

. . . . . . . . . . . .
Ψ1
αn

Ψ2
αn

. . . Ψn
αn

 because Ψj
τ1 = 0 for j = 2, . . . , n
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Let BT
ij denote the submatrix formed by deleting the i-th row and j-th column of matrix BT.

Then:
det (B) = det

(
BT
)

= Ψ1
τ1 det

(
BT

11

)
= (1− δρ−1)

c

τ21
det
(
BT

11

)
By the argument above regarding the Jacobian matrix, limδ→0B

T
11 = I. So:

lim
δ→0

det (B) =
c

τ21
det (I) =

c

τ21
> 0 which implies

∂α1

∂τ1
< 0 for small δ

A lower value of αi means that player i is more likely to file (be type αit ≥ αi).

Proposition 3: When another player’s trade stake (τj) increases, player i is less likely to file in
any given period.

Proof of Proposition 3. Because the indexing of players is arbitrary, we solve for the impact of τn
on α1. By the implicit function theorem:

∂α1

∂τn
=
−det (C)

det (J)
where C =


Ψ1
τn Ψ1

α2
. . . Ψ1

αn−1
Ψ1
αn

Ψ2
τn Ψ2

α2
. . . Ψ2

αn−1
Ψ2
αn

. . . . . . . . . . . . . . .

Ψn−1
τn Ψn−1

α2
. . . Ψn−1

αn−1
Ψn−1
αn

Ψn
τn Ψn

α2
. . . Ψn

αn−1
Ψn
αn


Then the transpose of C, which is denoted by CT, is:

CT =


0 0 . . . 0 Ψn

τn

Ψ1
α2

Ψ2
α2

. . . Ψn−1
α2

Ψn
α2

. . . . . . . . . . . . . . .

Ψ1
αn−1

Ψ2
αn−1

. . . Ψn−1
αn−1

Ψn
αn−1

Ψ1
αn

Ψ2
αn

. . . Ψn−1
αn

Ψn
αn

 because Ψj
τn = 0 for j = 1, . . . , n− 1

We can define a new matrix D by rearranging matrix CT using (n− 1) column switches, and
(n− 2) row switches:

CT after (n− 1) column switches is


Ψn
τn 0 0 . . . 0

Ψn
α2

Ψ1
α2

Ψ2
α2

. . . Ψn−1
α2

. . . . . . . . . . . . . . .

Ψn
αn−1

Ψ1
αn−1

Ψ2
αn−1

. . . Ψn−1
αn−1

Ψn
αn

Ψ1
αn

Ψ2
αn

. . . Ψn−1
αn



and after (n− 2) row switches is


Ψn
τn 0 0 . . . 0

Ψn
αn

Ψ1
αn

Ψ2
αn

. . . Ψn−1
αn

Ψn
α2

Ψ1
α2

Ψ2
α2

. . . Ψn−1
α2

. . . . . . . . . . . . . . .

Ψn
αn−1

Ψ1
αn−1

Ψ2
αn−1

. . . Ψn−1
αn−1

 ≡ D

Note that:

det (C) = det
(
CT
)

= (−1)2n−3 det (D) = −Ψn
τn det (D11) = − (1− δρ−n)

c

τ2n
det (D11)
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To ascertain the sign of det (D11), define the following matrix:

E ≡ D11 =


Ψ1
αn

Ψ2
αn

. . . Ψn−1
αn

Ψ1
α2

Ψ2
α2

. . . Ψn−1
α2

. . . . . . . . . . . .

Ψ1
αn−1

Ψ2
αn−1

. . . Ψn−1
αn−1



So: det (E) =

n−1∑
k=1

(−1)k+1 Ψk
αn det (E1k)

=
n−1∑
k=1

(−1)k+1

δf (αn)
ρ

ρkρn

 c

τk
− δ

1− δ
b+ r +

αk∫
αL

αf (α) dα− αkρk

det (E1k)

=

[
δf (αn) ρ

ρn

] n−1∑
k=1

(−1)k+1

(
1

ρk

) c

τk
− δ

1− δ
b+ r +

αk∫
αL

αf (α) dα− αkρk

 det (E1k)

So det (E) > 0 if and only if the following condition holds:

φ ≡
n−1∑
k=1

(−1)k+1

(
1

ρk

) c

τk
− δ

1− δ
b+ r +

αk∫
αL

αf (α) dα− αkρk

 det (E1k) > 0

By the argument above regarding the Jacobian matrix, limδ→0E11 = I. So limδ→0 det(E11) =
det(I) = 1. For k = 2, 3, . . . , n− 1, calculating det (E1k) requires that we remove the k-th column
of E. This removes Ψk

αk
from the k-th row of E. Since all other entries in the k-th row of E

approach 0 as δ approaches 0, limδ→0 det (E1k) = 0. So:

lim
δ→0

φ =

(
1

ρ1

) c

τ1
− α1ρ1 + r +

α1∫
αL

αf (α) dα


By Lemma 1, we know that α1 <

c
τ1

. This implies that 0 < c
τ1
− α1 <

c
τ1
− α1ρ1. So limδ→0 φ > 0,

which implies that det (E) = det (D11) > 0. We can thus conclude that:

det (C) = − (1− δρ−n)
c

τ2n
det (D11) < 0 ⇒ ∂α1

∂τn
> 0 for small δ

Proposition 4: When the legal merit of the case increases, each player is more likely to file the
case in any given period.

Proof of Proposition 4. Because the indexing of players is arbitrary, we solve for the impact of r
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on α1. By the implicit function theorem:

∂α1

∂r
=
−det (G)

det (J)
where G =


Ψ1
r Ψ1

α2
. . . Ψ1

αn
Ψ2
r Ψ2

α2
. . . Ψ2

αn
. . . . . . . . . . . .
Ψn
r Ψn

α2
. . . Ψn

αn


The transpose of G, which is denoted by GT, is

GT =


Ψ1
r Ψ2

r . . . Ψn
r

Ψ1
α2

Ψ2
α2

. . . Ψn
α2

. . . . . . . . . . . .
Ψ1
αn

Ψ2
αn

. . . Ψn
αn


Note that:

det (G) = det
(
GT
)

=
n∑
k=1

(−1)k+1 Ψk
r det

(
GT

1k

)
=

n∑
k=1

(−1)k+1 δρ−k det
(
GT

1k

)
So det (G) > 0 if and only if the following condition holds:

λ ≡
n∑
k=1

(−1)k+1 ρ−k det
(
GT

1k

)
> 0

By the argument above regarding the Jacobian matrix, limδ→0G
T
11 = I. So limδ→0 det(GT

11) =
det(I) = 1. For k = 2, 3, . . . , n− 1, calculating det

(
GT

1k

)
requires that we remove the k-th column

of GT. This removes Ψk
αk

from the k-th row of GT. Since all other entries in the k-th row of GT

approach 0 as δ approaches 0, limδ→0 det
(
GT

1k

)
= 0. So:

lim
δ→0

λ = ρ−1 > 0 ⇒ lim
δ→0

det (G) > 0 ⇒ ∂α1

∂r
< 0 for small δ

Diffusion Comparative Statics

Proposition 5: When the number of affected countries increases, each player is less likely to file
in any given period.

Proof of Proposition 5. Suppose players have identical trade stakes, τi = τ
n . The logic from the

proof of Proposition 1 ensures that for small δ > 0, there exists a unique Bayesian Nash equilibrium
in which each player has an interior cutpoint αi ∈ (αL, αH). Since our assumption that players have
identical trade stakes makes the game symmetric, the system of Ψi (α)-equations can be simplified
to one equation, which I denote as Ψn, with one endogenous variable, αn.

Let ρn denote the ex ante probability that an arbitrary player does not file the dispute when the
game has n players. In equilibrium, each player in the n-player game uses cutpoint αn, which is
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implicitly defined by:

Ψn = αn [1− δ (ρn)n]−
[
1− δ (ρn)n−1

](cn
τ
− δ

1− δ
b

)
+ δ (ρn)n−1

r +

αn∫
αL

αf (α) dα

 = 0

Consider the value of function Ψn in the limit as δ becomes arbitrarily small:

lim
δ→0

Ψn = αn −
cn

τ

We can therefore identify the equilibrium cutpoint as δ becomes arbitrarily small:

lim
δ→0

Ψn = 0 ⇔ lim
δ→0

αn =
cn

τ

By the same logic, the unique cutpoint for the (n+ 1)-player game, αn+1, is implicitly defined by:

Ψn+1 = αn+1

[
1− δ (ρn+1)

n+1
]
− [1− δ (ρn+1)

n]

[
c (n+ 1)

τ
− δ

1− δ
b

]

+δ (ρn+1)
n

r +

αn+1∫
αL

αf (α) dα

 = 0

and the following holds:

lim
δ→0

Ψn+1 = αn+1 −
c (n+ 1)

τ
= 0 ⇔ lim

δ→0
αn+1 =

c (n+ 1)

τ

So limδ→0 αn < limδ→0 αn+1. This means that each player is less likely to file when the number of
players increases and δ is small.

Proposition 6: When condition (6) holds and the number of players increases, the overall prob-
ability that the case is filed by at least one player decreases.

Proof of Proposition 6. Suppose players have identical trade stakes, τi = τ
n . Conditional on reach-

ing period t, the probability that at least one state files the case in period t when there are n
players is: 1− (ρn)n. This probability is decreasing in n iff: (ρn)n < (ρn+1)

n+1. By the derivations
in the Proof of Proposition 5:

lim
δ→0

(ρn)n = F
(cn
τ

)n
and lim

δ→0
(ρn+1)

n+1 = F

(
c (n+ 1)

τ

)n+1

So for small δ > 0, Proposition 6 holds for probability distributions and parameters such that:

F
(cn
τ

)n
< F

(
c (n+ 1)

τ

)n+1

(6)
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Proposition 7: In observable WTO disputes, cases that challenge more diffuse policies will, on
average, have more enforcement delay when condition (6) holds.

Proof of Proposition 7. Suppose players have identical trade stakes, τi = τ
n . For any period t, we

can model the probability that the case is filed by at least one player as a binomial random variable.
Suppose there is a “failure” if no one files the case, and a “success” if at least one player files the
case. Then the probability of a failure is (ρn)n and the probability of a success is 1− (ρn)n.

Let X denote the number of time periods until the first success. Then X is a geometric random
variable and:

Pr (X = t) = [(ρn)n]t−1 [1− (ρn)n]

The expected number of time periods until a success in the n-player game is:

E [X|n] =

∞∑
t=1

t [(ρn)n]t−1 [1− (ρn)n] =
1

1− (ρn)n

To identify the impact of n, note that:

E [X|n] < E [X|n+ 1] ⇔ 1

1− (ρn)n
<

1

1− (ρn+1)
(n+1)

⇔ (ρn)n < (ρn+1)
n+1

This holds whenever condition (6) holds.

Proposition 8: In observable WTO disputes, cases that challenge diffuse policies will, on average,
have more legal merit than cases that challenge concentrated policies.

Proof of Proposition 8. Suppose players have identical trade stakes, τi = τ
n . By the Proof of

Proposition 1, the marginal benefit for player i of type αi from filing the case when there are n
players is:

Ψn (αi) = αi [1− δ (ρn)n]−
[
1− δ (ρn)n−1

](cn
τ
− δ

1− δ
b

)
+ δ (ρn)n−1

r +

αi∫
αL

xf (x) dx


So:

Ψn
r (αi) = δ (ρn)n−1 > 0 and lim

r→∞
Ψn (αi) =∞ > 0

and lim
δ→0

Ψn (αi|r = 0) = αi −
cn

τ
< 0⇔ αi <

cn

τ

So for small δ and very high αi-values, player i always files the case, regardless of the value of
r. But for small δ and low αi-values, the intermediate value theorem ensures that there exists a
unique critical value r (αi, n) > 0 such that Ψn (αi|r (αi, n)) = 0, meaning that a player of type αi
files if and only if r (αi, n) ≤ r.

Also note that the marginal benefit for player i of type αi from filing the case when there are n+ 1
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players is:

Ψn+1 (αi) = αi

[
1− δ (ρn+1)

n+1
]
− [1− δ (ρn+1)

n]

(
c (n+ 1)

τ
− δ

1− δ
b

)

+ δ (ρn+1)
n

r +

αi∫
αL

xf (x) dx


Given the logic above, for small δ and low αi-values there exists a unique critical value for the
(n+ 1)-player game, r (αi, n+ 1) > 0, such that Ψn+1 (αi|r (αi, n+ 1)) = 0.

Finally, note that:

lim
δ→0

[
Ψn (αi)−Ψn+1 (αi)

]
=
c

τ
> 0

By definition of the critical value:

Ψn (αi|r (αi, n)) = 0 = Ψn+1 (αi|r (αi, n+ 1)) < Ψn (αi|r (αi, n+ 1)) for small δ

This implies that r (αi, n) < r (αi, n+ 1). So as the number of players increases, larger values of r
will be necessary for a player of type αi <

cn
τ to file the case.

A.2 Robustness: Increase in Players While Trade Stakes Held Con-
stant

Claim 1: Each individual in an n-player game is less likely to file if a new individual becomes
affected by the trade policy.

Proof of Claim 1. Suppose we have an n-player game with trade stakes, τn ≡ (τn1 , τ
n
2 , . . . , τ

n
n ). By

the proof of proposition 1, equilibrium behavior is defined by a vector, αn ≡ (αn1 , α
n
2 , . . . , α

n
n), which

is in turn defined by a system of equations:

Ψn
1 (αn) = 0

Ψn
2 (αn) = 0

. . . . . . . . .

Ψn
n (αn) = 0

where:

Ψn
i (x, τn) ≡ x

1− δF (x)
∏
j 6=i

F
(
αnj
)−

1− δ
∏
j 6=i

F
(
αnj
)( c

τni
− δ

1− δ
b

)

+δ
∏
j 6=i

F
(
αnj
)r +

x∫
αL

αf (α) dα


= x− c

τni
+

δ

1− δ
b+ δ

∏
j 6=i

F
(
αnj
) c

τni
− δ

1− δ
b+ r +

x∫
αL

(α− x) f (α) dα


10



Now consider an n + 1 player game where τn+1
i = τni for all i = 1, 2, . . . , n and τn+1

n+1 > 0. Again,

equilibrium behavior is defined by a vector, αn+1 ≡
(
αn+1
1 , αn+1

2 , . . . , αn+1
n

)
, which is in turn defined

by a system of equations:

Ψn+1
1

(
αn+1

)
= 0

Ψn+1
2

(
αn+1

)
= 0

. . . . . . . . .

Ψn+1
n+1

(
αn+1

)
= 0

where:

Ψn+1
i

(
x, τn+1

)
≡ x

1− δF (x)
∏
j 6=i

F
(
αn+1
j

)−
1− δ

∏
j 6=i

F
(
αn+1
j

)( c

τn+1
i

− δ

1− δ
b

)

+δ
∏
j 6=i

F
(
αn+1
j

)r +

x∫
αL

αf (α) dα


= x− c

τn+1
i

+
δ

1− δ
b+ δ

∏
j 6=i

F
(
αn+1
j

) c

τn+1
i

− δ

1− δ
b+ r +

x∫
αL

(α− x) f (α) dα


Define the difference function for each i = 1, 2, . . . , n:

∆n
i (x) ≡ Ψn

i (x, τn)−Ψn+1
i

(
x, τn+1

)
Then:

∆n
i (x) = x− c

τni
+

δ

1− δ
b+ δ

∏
j 6=i

F
(
αnj
) c

τni
− δ

1− δ
b+ r +

x∫
αL

(α− x) f (α) dα


−

x− c

τn+1
i

+
δ

1− δ
b+ δ

∏
j 6=i

F
(
αn+1
j

) c

τn+1
i

− δ

1− δ
b+ r +

x∫
αL

(α− x) f (α) dα


Because τn+1

i = τni for all i = 1, 2, . . . , n:

∆n
i (x) = δ

∏
j 6=i

F
(
αnj
)
−
∏
j 6=i

F
(
αn+1
j

) c

τni
− δ

1− δ
b+ r +

x∫
αL

(α− x) f (α) dα


Case 1: If

∏
j 6=i F

(
αnj

)
<
∏
j 6=i F

(
αn+1
j

)
, then ∆n

i (x) < 0, meaning that Ψn
i (x) < Ψn+1

i (x). This

in turn would imply that αn+1
i < αni . This holds for any arbitrary player i = 1, 2, . . . , n. So it must

be true that for any i = 1, 2, . . . , n:∏
j 6=i

F
(
αn+1
j

)
= F

(
αn+1
n+1

) ∏
j 6=i∧j∈{1,2,...n}

F
(
αn+1
j

)
<

∏
j 6=i∧j∈{1,2,...n}

F
(
αn+1
j

)
<

∏
j 6=i∧j∈{1,2,...n}

F
(
αnj
)

This creates a contradiction.
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Case 2: If
∏
j 6=i F

(
αnj

)
=
∏
j 6=i F

(
αn+1
j

)
, then ∆n

i (x) = 0, meaning that Ψn
i (x) = Ψn+1

i (x). This

in turn would imply that αn+1
i = αni . So for any i = 1, 2, . . . , n:∏

j 6=i
F
(
αn+1
j

)
= F

(
αn+1
n+1

) ∏
j 6=i∧j∈{1,2,...n}

F
(
αn+1
j

)
<

∏
j 6=i∧j∈{1,2,...n}

F
(
αn+1
j

)
=

∏
j 6=i∧j∈{1,2,...n}

F
(
αnj
)

Once again, this creates a contradiction.

Case 3: So it must be true that
∏
j 6=i F

(
αnj

)
>
∏
j 6=i F

(
αn+1
j

)
, meaning that ∆n

i (x) > 0, and

hence Ψn
i (x) > Ψn+1

i (x), and hence αn+1
i > αni .

So each individual in the original set of n players is less likely to file when the set expands to
include a new player n+ 1.

Claim 2: For small δ, the overall likelihood of enforcement increases if a new individual becomes
affected by the trade policy.

Proof of Claim 2. Define the probability that someone enforces in the n-player game as:

βn = 1−
n∏
k=1

F (αnk)

Define the difference function:

Γn ≡ βn+1 − βn =

n∏
k=1

F (αnk)−
n+1∏
k=1

F
(
αn+1
k

)
Note that:

lim
δ→0

Ψn
i (x, τn) = x− c

τni
= 0 ⇔ lim

δ→0
αni =

c

τni

lim
δ→0

Ψn+1
i

(
x, τn+1

)
= x− c

τn+1
i

= 0 ⇔ lim
δ→0

αn+1
i =

c

τn+1
i

So:
lim
δ→0

αni = lim
δ→0

αn+1
i for any i = 1, 2, . . . , n because τni = τn+1

i

So:

lim
δ→0

Γn =

n∏
k=1

F

(
c

τnk

)
−
n+1∏
k=1

F

(
c

τn+1
k

)
=

n∏
k=1

F

(
c

τnk

)[
1− F

(
c

τn+1
n+1

)]
> 0

So for small δ, increasing the number of players increases the overall likelihood of enforcement.
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A.3 Robustness: Common Reward as a Function of Diffuseness,
r (n)

Let the common reward of litigation be a function of diffuseness, r (n).
Recall that for an n-player game, the equilibrium cutpoint, x, is defined by:

Ψn (x) ≡ x [1− δF (x)n]−
[
1− δF (x)n−1

](cn
τ
− δ

1− δ
b

)
+ δF (x)n−1

r (n) +

x∫
αL

αf (α) dα

 = 0

And

∂Ψn (x)

∂x
> 0

A player is less likely to file as diffuseness (n) increases iff: αn < αn+1.
Define the difference function:

∆ (x) ≡ Ψn (x)−Ψn+1 (x)

Our results hold generally iff:
∆ (x) > 0 for: x = αn

Note that:

∆ (x) = x [1− δF (x)n]−
[
1− δF (x)n−1

](cn
τ
− δ

1− δ
b

)
+ δF (x)n−1

r (n) +

x∫
αL

αf (α) dα


−

x [1− δF (x)n+1
]
− [1− δF (x)n]

(
c (n+ 1)

τ
− δ

1− δ
b

)
+ δF (x)n

r (n+ 1) +

x∫
αL

αf (α) dα


=
c

τ
− δx [1− F (x)]F (x)n + δ [1− F (x)]F (x)n−1

 x∫
αL

αf (α) dα− δ

1− δ
b


+ δF (x)n−1

{
cn

τ
+ r (n)− F (x)

[
c (n+ 1)

τ
+ r (n+ 1)

]}

=
c

τ
+ δ [1− F (x)]F (x)n−1

 x∫
αL

αf (α) dα− δ

1− δ
b− xF (x)


+ δF (x)n−1

{
[1− F (x)]

cn

τ
− F (x)

c

τ
+ r (n)− F (x) r (n+ 1)

}
= [1− δF (x)n]

c

τ
− δ [1− F (x)]F (x)n−1

 x∫
αL

(x− α) f (α) dα+
δ

1− δ
b


+ δF (x)n−1

{
[1− F (x)]

cn

τ
+ r (n)− F (x) r (n+ 1)

}

13



So ∆ (x) > 0 iff:

δ [1− F (x)]F (x)n−1

 x∫
αL

(x− α) f (α) dα+
δ

1− δ
b


< [1− δF (x)n]

c

τ
+ δF (x)n−1

{
[1− F (x)]

cn

τ
+ r (n)− F (x) r (n+ 1)

}
⇔ δ [1− F (x)]

 x∫
αL

(x− α) f (α) dα+
δ

1− δ
b


<

[
1− δF (x)n

F (x)n−1

]
c

τ
+ δ [1− F (x)]

cn

τ
+ δ [r (n)− F (x) r (n+ 1)]

• Case 1: If r (n) is decreasing in n, then r (n+ 1) < r (n). And it is always true that
F (x) r (n+ 1) < r (n+ 1). So 0 < r (n) − F (x) r (n+ 1), which implies that constraint
is more easily satisfied.

• Case 2: If r (n) is increasing in n, then r (n) < r (n+ 1). If is unclear whether the term r (n)−
F (x) r (n+ 1) is positive or negative. This would depend on the shape of the distribution
function and other specific parameter values. But the necessary constraint for Proposition 5
to hold is more easily satisfied if δ or b are small, or c is large.

A.4 Robustness: Variation in Individual Litigation Cost

Let ci > 0 denote player i’s individual cost of litigation. Define the vector of litigation costs as
c ≡ (c1, c2, . . . , cn). Suppose that ci

τi
∈ (αL, αH) for every i.

Equilibrium Behavior

The logic for Proposition 1 continues to hold. The equilibrium strategies that are characterized by
cutpoints α = (α1, α2, . . . , αn) are implicitly defined by the following system of n equations:

Ψ1 (α|c) = 0

Ψ2 (α|c) = 0

. . . . . . . . .

Ψn (α|c) = 0

where:

Ψi ≡ αi (1− δρ)− (1− δρ−i)
(
ci
τi
− δ

1− δ
b

)
+ δρ−i

r +

αi∫
αL

αf (α) dα

 (7)

Intermediate Results and General Comparative Statics

All of the intermediate results continue to hold when the litigation cost is indexed, ci. The proofs
of Propositions 2-4 also continue to hold.
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Diffusion Comparative Statics

Proposition 5: When the number of affected countries increases, each country is less likely to file
in any given period.

Proof of Proposition 5. Suppose that players have identical trade stakes, τi = τ
n . The logic from

the proof of Proposition 1 ensures that for small δ > 0, there exists a unique Bayesian Nash
equilibrium in which each player has an interior cutpoint αi ∈ (αL, αH). If different players have
different litigation costs, then the system of n equations that define the αi values can no longer be
simplified to a single equation (as in the main proofs).

Using equation (7), we can identify each player i’s equilibrium cutpoint of the n-player game as δ
becomes arbitrarily small:

lim
δ→0

Ψi = 0 ⇔ lim
δ→0

αi =
cin

τ

Now hold the litigation costs for players 1 through n constant and add a player n + 1 with cost
parameter cn+1. Define the new vector of litigation costs as c′ ≡ (c1, c2, . . . , cn, cn+1). The newe-
quilibrium cutpoints α′ =

(
α′1, α

′
2, . . . , α

′
n, α

′
n+1

)
are implicitly defined by the following system of

n+ 1 equations:

Γ1
(
α′|c′

)
= 0

Γ2
(
α′|c′

)
= 0

. . . . . . . . .

Γn
(
α′|c′

)
= 0

Γn+1
(
α′|c′

)
= 0

where:

Γi ≡ α′i
(
1− δρ′

)
−
(
1− δρ′−i

)(ci(n+ 1)

τ
− δ

1− δ
b

)
+ δρ′−i

r +

α′i∫
αL

αf (α) dα


We can therefore identify the equilibrium cutpoint of the (n + 1)-player game as δ becomes arbi-
trarily small:

lim
δ→0

Γi = 0 ⇔ lim
δ→0

α′i =
ci(n+ 1)

τ

So limδ→0 αi < limδ→0 α
′
i. This means that each player in the original n-player game is less likely

to file when the number of players increases and δ is small.

Proposition 6: When condition (8) holds and the number of affected players increases, the overall
probability that the case is filed by at least one player decreases.

Proof of Proposition 6. Suppose players have identical trade stakes, τi = τ
n . Use the notation

defined above in the Proof of Proposition 5. Conditional on reaching period t, the probability that

15



at least one state files the case in period t when there are n players is:

1−
n∏
i=1

ρi = 1−
n∏
i=1

F (αi)

Conditional on reaching period t, the probability that at least one state files the case in period t
when there are n+ 1 players is:

1−
n+1∏
i=1

ρ′i = 1−
n+1∏
i=1

F
(
α′i
)

So the probability that the case is filed in period t is decreasing in n iff:

n∏
i=1

F (αi) <

n+1∏
i=1

F
(
α′i
)

By the derivations in the Proof of Proposition 5:

lim
δ→0

n∏
i=1

F (αi) =

n∏
i=1

F
(cin
τ

)
and lim

δ→0

n+1∏
i=1

F
(
α′i
)

=

n+1∏
i=1

F

(
ci(n+ 1)

τi

)
So for small δ > 0, Proposition 6 holds for probability distributions and parameters such that:

n∏
i=1

F
(cin
τ

)
<

n+1∏
i=1

F

(
ci(n+ 1)

τi

)
(8)

Proposition 7: In observable WTO disputes, cases that challenge more diffuse policies will, on
average, have more enforcement delay when condition (8) holds.

Proof of Proposition 7. Suppose players have identical trade stakes, τi = τ
n . For any period t, we

can model the probability that the case is filed by at least one player as a binomial random variable.
Suppose there is a “failure” if no one files the case, and a “success” if at least one player files the
case. Then the probability of a failure is ρ ≡

∏n
i=1 ρi and the probability of a success is 1− ρ.

Let X denote the number of time periods until the first success. Then X is a geometric random
variable and:

Pr (X = t) = ρt−1 (1− ρ)

The expected number of time periods until a success in the n-player game is:

E [X|n] =

∞∑
t=1

tρt−1 (1− ρ) =
1

1− ρ

Similarly, for the (n + 1)-player game, denote the probability of a failure is ρ′ ≡
∏n+1
i=1 ρ

′
i and the

probability of a success is 1− ρ′. Then the expected number of time periods until a success in the
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(n+ 1)-player game is:

E [X|n+ 1] =

∞∑
t=1

t
(
ρ′
)t−1 (

1− ρ′
)

=
1

1− ρ′

To identify the impact of n, note that:

E [X|n] < E [X|n+ 1] ⇔ 1

1− ρ
<

1

1− ρ′
⇔ ρ < ρ′

Note that this is equivalent to condition (8).

Proposition 8: In observable WTO disputes, cases that challenge diffuse policies will, on average,
have more legal merit than cases that challenge concentrated policies.

Proof of Proposition 8. Suppose players have identical trade stakes, τi = τ
n . Use the notation

defined above in the Proof of Proposition 5. In the n-player game with the litigation cost vector c,
the marginal benefit for player i of type αi from filing the case is:

Ψi (αi|c) = αi (1− δρ)− (1− δρ−i)
(
cin

τ
− δ

1− δ
b

)
+ δρ−i

r +

αi∫
αL

xf (x) dx


So:

Ψi
r (αi|c) = δρ−i > 0 and lim

r→∞
Ψi (αi|c) =∞ > 0

and lim
δ→0

Ψi (αi|c, r = 0) = αi −
cin

τ
< 0⇔ αi <

cin

τ

So for small δ and very high αi-values, player i always files the case, regardless of the value of r.
But for small δ and low αi-values, the intermediate value theorem ensures that for each player i
there exists a unique critical value ri (αi, c) > 0 such that Ψi (αi|c, ri (αi, c)) = 0, meaning that a
player i of type αi files if and only if ri (αi, c) ≤ r.

Also note that in the (n + 1)-player game with the litigation cost vector c′, the marginal benefit
for player i of type αi from filing the case is:

Γi
(
αi|c′

)
= αi

(
1− δρ′

)
−
(
1− δρ′−i

)(ci(n+ 1)

τ
− δ

1− δ
b

)
+ δρ′−i

r +

αi∫
αL

xf (x) dx


So:

Γir
(
αi|c′

)
= δρ′−i > 0 and lim

r→∞
Γi
(
αi|c′

)
=∞ > 0

and lim
δ→0

Γi
(
αi|c′, r = 0

)
= αi −

ci(n+ 1)

τ
< 0⇔ αi <

ci(n+ 1)

τ

So for small δ and very high αi-values, player i always files the case, regardless of the value of r.
But for small δ and low αi-values, the intermediate value theorem ensures that for each player i
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there exists a unique critical value ri (αi, c
′) > 0 such that Γi (αi|c′, ri (αi, c

′)) = 0, meaning that a
player of type αi files if and only if ri (αi, c

′) ≤ r.

Finally, note that:

lim
δ→0

[
Ψi (αi|c)− Γi

(
αi|c′

)]
=
ci
τ
> 0

By definition of the critical value:

Ψi (αi|c, ri (αi, c)) = 0 = Γi
(
αi|c′, ri

(
αi, c

′)) < Ψi
(
αi|c, ri

(
αi, c

′)) for small δ

This implies that ri (αi, c) < ri (αi, c
′). So as the number of players increases, larger values of r

will be necessary for player i of type αi <
cin
τ to file the case.

A.5 Robustness: Litigation Cost Decreasing in the Number of Play-
ers

Let cn denote the cost of litigation in the n-player game. Assume that cn+1 ≤ cn for all n ∈ N. So
increasing the number of players decreases the cost of litigation for each individual player.
For our diffusion results, we additionally assume that the following constraint holds:

cn

(
n

n+ 1

)
< cn+1 (9)

Equilibrium Behavior

If we replace the parameter c with cn for the n-player game, then the logic for Proposition 1
continues to hold. Each player i’s equilibrium cutpoint is defined by the following constraint:

Ψi ≡ αi (1− δρ)− (1− δρ−i)
(
cn
τi
− δ

1− δ
b

)
+ δρ−i

r +

αi∫
αL

αf (α) dα


Intermediate Results and General Comparative Statics

All of the intermediate results continue to hold when the cost parameter is a function of the
number of players, cn. The proofs of Propositions 2-4 also continue to hold with the modified cost
parameter.

Diffusion Comparative Statics

Proposition 5: When the number of affected countries increases and condition (9) holds, each
country is less likely to file in any given period.

Proof of Proposition 5. Suppose players have identical trade stakes, τi = τ
n . The initial logic from

the main proof of Proposition 5 still holds. The system of Ψi (α)-equations can be simplified to
one equation, which I denote as Ψn, with one endogenous variable, αn.

Let ρn denote the ex ante probability that an arbitrary player does not file the dispute when the
game has n players. In equilibrium, each player in the n-player game uses cutpoint αn, which is
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implicitly defined by:

Ψn = αn [1− δ (ρn)n]−
[
1− δ (ρn)n−1

](cnn
τ
− δ

1− δ
b

)
+ δ (ρn)n−1

r +

αn∫
αL

αf (α) dα

 = 0

Consider the value of function Ψn in the limit as δ becomes arbitrarily small:

lim
δ→0

Ψn = αn −
cnn

τ

We can therefore identify the equilibrium cutpoint as δ becomes arbitrarily small:

lim
δ→0

Ψn = 0 ⇔ lim
δ→0

αn =
cnn

τ

By the same logic, the unique cutpoint for the (n+ 1)-player game, αn+1, is implicitly defined by:

Ψn+1 = αn+1

[
1− δ (ρn+1)

n+1
]
− [1− δ (ρn+1)

n]

(
cn+1

τ
− δ

1− δ
b

)

+δ (ρn+1)
n

r +

αn+1∫
αL

αf (α) dα

 = 0

and the following holds:

lim
δ→0

Ψn+1 = αn+1 −
cn+1 (n+ 1)

τ
= 0 ⇔ lim

δ→0
αn+1 =

cn+1 (n+ 1)

τ

So:

lim
δ→0

αn < lim
δ→0

αn+1 ⇔ cn

(
n

n+ 1

)
< cn+1

This means that each player is less likely to file when the number of players increases and δ is small
and condition (9) holds.

Proposition 6: When condition (10) holds and the number of players increases, the overall
probability that the case is filed by at least one player decreases.

Proof of Proposition 6. Suppose players have identical trade stakes, τi = τ
n . Conditional on reach-

ing period t, the probability that at least one state files the case in period t when there are n
players is: 1− (ρn)n. This probability is decreasing in n iff: (ρn)n < (ρn+1)

n+1. By the derivations
in the Proof of Proposition 5:

lim
δ→0

(ρn)n = F
(cnn
τ

)n
and lim

δ→0
(ρn+1)

n+1 = F

(
cn+1 (n+ 1)

τ

)n+1

So for small δ > 0, Proposition 6 holds for probability distributions and parameters such that:

F
(cnn
τ

)n
< F

(
cn+1 (n+ 1)

τ

)n+1

(10)
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Proposition 7: In observable WTO disputes, cases that challenge more diffuse policies will, on
average, have more enforcement delay when condition (10) holds.

Proof of Proposition 7. Suppose players have identical trade stakes, τi = τ
n . For any period t, we

can model the probability that the case is filed by at least one player as a binomial random variable.
Suppose there is a “failure” if no one files the case, and a “success” if at least one player files the
case. Then the probability of a failure is (ρn)n and the probability of a success is 1− (ρn)n.

Let X denote the number of time periods until the first success. Then X is a geometric random
variable and:

Pr (X = t) = [(ρn)n]t−1 [1− (ρn)n]

The expected number of time periods until a success in the n-player game is:

E [X|n] =

∞∑
t=1

t [(ρn)n]t−1 [1− (ρn)n] =
1

1− (ρn)n

To identify the impact of n, note that:

E [X|n] < E [X|n+ 1] ⇔ 1

1− (ρn)n
<

1

1− (ρn+1)
(n+1)

⇔ (ρn)n < (ρn+1)
n+1

This holds whenever condition (10) holds.

Proposition 8: In observable WTO disputes, cases that challenge diffuse policies will, on average,
have more legal merit than cases that challenge concentrated policies when condition (9) holds

Proof of Proposition 8. Suppose players have identical trade stakes, τi = τ
n . By the Proof of

Proposition 1, the marginal benefit for player i of type αi from filing the case when there are n
players is:

Ψn (αi) = αi [1− δ (ρn)n]−
[
1− δ (ρn)n−1

](cnn
τ
− δ

1− δ
b

)
+ δ (ρn)n−1

r +

αi∫
αL

xf (x) dx


So:

Ψn
r (αi) = δ (ρn)n−1 > 0 and lim

r→∞
Ψn (αi) =∞ > 0

and lim
δ→0

Ψn (αi|r = 0) = αi −
cnn

τ
< 0⇔ αi <

cnn

τ

So for small δ and very high αi-values, player i always files the case, regardless of the value of
r. But for small δ and low αi-values, the intermediate value theorem ensures that there exists a
unique critical value r (αi, n) > 0 such that Ψn (αi|r (αi, n)) = 0, meaning that a player of type αi
files if and only if r (αi, n) ≤ r.

Also note that the marginal benefit for player i of type αi from filing the case when there are n+ 1
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players is:

Ψn+1 (αi) = αi

[
1− δ (ρn+1)

n+1
]
− [1− δ (ρn+1)

n]

(
cn+1 (n+ 1)

τ
− δ

1− δ
b

)

+ δ (ρn+1)
n

r +

αi∫
αL

xf (x) dx


Given the logic above, for small δ and low αi-values there exists a unique critical value for the
(n+ 1)-player game, r (αi, n+ 1) > 0, such that Ψn+1 (αi|r (αi, n+ 1)) = 0.

Finally, note that:

lim
δ→0

[
Ψn (αi)−Ψn+1 (αi)

]
=
cn+1 (n+ 1)

τ
− cnn

τ
> 0 ⇔ cn

(
n

n+ 1

)
< cn+1

So when condition (9) holds, by definition of the critical value:

Ψn (αi|r (αi, n)) = 0 = Ψn+1 (αi|r (αi, n+ 1)) < Ψn (αi|r (αi, n+ 1)) for small δ

This implies that r (αi, n) < r (αi, n+ 1). So as the number of players increases, larger values of r
will be necessary for a player of type αi <

cnn
τ to file the case.

A.6 Robustness: Panel Bias

To check the robustness of our results, we allow the public reward from litigation to be a function
of the number of affected states, and assume it has the following functional form:

rn ≡ πnw + (1− πn) y

where πn ∈ [0, 1] is the probability of a pro-complainant ruling, w is the payoff if the complainant
wins litigation, y is the payoff if the complainant does not win litigation, and y < w.

To isolate the effect of panel bias, we do not allow a player’s individual trade shake, τi, to be a
function of the number of affected states.

Equilibrium Behavior

The logic for Proposition 1 continues to hold. The equilibrium strategies that are characterized by
cutpoints α = (α1, α2, . . . , αn) are implicitly defined by the following system of n equations:

Ψ1 (α) = 0

Ψ2 (α) = 0

. . . . . . . . .

Ψn (α) = 0
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where:

Ψi ≡ αi (1− δρ)− (1− δρ−i)
(
c

τi
− δ

1− δ
b

)
+ δρ−i [πnwn + (1− πn) yn] + δρ−i

αi∫
αL

αf (α) dα

Intermediate Results and General Comparative Statics

All of the intermediate results continue to hold when the reward payoff is indexed by the number
of players, rn. The proofs of Propositions 2-4 also continue to hold.

Impact of Panel Bias

Suppose that increasing the number of players increases the probability of a pro-complainant ruling
(πn), but does affect a player’s individual trade shake, τi.

Proposition: When the number of players increases: (1) each player i more likely to file in any
given period; and (2) the overall probability that the case is filed by at least one player increases.

Proof of Proposition. (1) Increasing the probability of a pro-complainant ruling (πn) increases the
expected public reward from filing the case, rn < rn+1. By the proof of Proposition 4, increasing
the number of players therefore decreases each player’s cutpoint: αin+1 < αin. This means that
each country more likely to file the case in any given period.

(2) Conditional on reaching period t, the probability that no state files the case in period t when
there are n players is defined as:

φn ≡
n∏
i=1

F
(
αin
)

Then the probability that at least one state files the case in period t is: 1 − φn. This probability
is increasing in n iff: φn+1 < φn. Note that:

φn+1 =
n+1∏
i=1

F
(
αin+1

)
= F

(
αn+1
n+1

) n∏
i=1

F
(
αin+1

)
<

n∏
i=1

F
(
αin+1

)
<

n∏
i=1

F
(
αin
)

= φn

Proposition: In observable WTO disputes, cases that challenge policies that affect more states
will, on average, have less enforcement delay.

Proof of Proposition. As in the proof of Proposition 7, conditional on reaching period t of the
game, we can model the probability that the case is filed by at least one player in period t as a
binomial random variable. Suppose there is a “failure” if no player files the case, and a “success”
if at least one player files the case. Then the probability of a failure is φn and the probability of a
success is 1− φn.

Let X denote the number of time periods until the first success. Then X is a geometric random
variable and:

Pr (X = t) = φt−1n (1− φn)
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The expected number of time periods until a success in the n-player game is:

E [X|n] =
∞∑
t=1

tφt−1n (1− φn) =
1

1− φn

To identify the impact of n, note that:

E [X|n+ 1] < E [X|n] ⇔ 1

1− φn+1
<

1

1− φn
⇔ φn+1 < φn

This holds by the previous result.

A.7 Robustness: Third Party Participation

Suppose that after the case is filed, affected states can join as a third party. This gives them
access to possible private benefits while avoiding the cost of being the complainant. We assume
that player i’s ex ante expected benefit from possibly being a third party in the future (given that
another player has filed the case) is σbτi where σ ∈ (0, 1).

Given the notation defined above in section A.1 and conditional on reaching period t, player i’s
expected utility functions in period t are:

EUit (file|αit, τi) =
δ

1− δ
(r + b) τi − c

EUit (don’t file|αit, τi) = −αitτi + (1− ρ−i)
δ

1− δ
(r + σb) τi + ρ−iδVi

Equilibrium Behavior

Proof of Proposition 1. Player i has incentive to file iff:

δ

1− δ
(r + b) τi − c ≥ −αitτi + (1− ρ−i)

δ

1− δ
(r + σb) τi + ρ−iδVi

⇔ αit ≥
c

τi
− δ

1− δ
[1− σ (1− ρ−i)] b− ρ−i

δ

1− δ
r +

δρ−i
τi

Vi ≡ αi (11)

Equilibrium behavior is therefore monotonic: high types (αit > αi) will file, and low types (αit < αi)
will not file. So player i’s best response function can be characterized by the value of αi defined in
equation (11).

Let ρi denote the ex ante probability that player i does not file in a given time period. Then:

ρi = Pr (αit < αi) = F (αi)

Let ρ denote the ex ante probability that no player files in a given time period, and ρ−i denote the
ex ante probability that no player besides i files in a given time period (per the description above).
Then:

ρ =

n∏
k=1

ρk =

n∏
k=1

F (αk) and ρ−i =
∏
j 6=i

ρj =

∏n
k=1 F (αk)

F (αi)
=

ρ

ρi

Also note that ρ = ρiρ−i.
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In an interior equilibrium—an equilibrium in which αi ∈ [αL, αH ] for all i—player i’s continuation
value is therefore:

Vi =

αi∫
αL

[
−ατi + (1− ρ−i)

δ

1− δ
(r + σb) τi + ρ−iδVi

]
f (α) dα

+

αH∫
αi

[
δ

1− δ
(r + b) τi − c

]
f (α) dα

= ρi

[
(1− ρ−i)

δ

1− δ
(r + σb) τi + ρ−iδVi

]

+ (1− ρi)
[

δ

1− δ
(r + b) τi − c

]
− τi

αi∫
αL

αf (α) dα (12)

Manipulating equation (12) to isolate Vi yields:

Vi =
1

1− δρ

(1− ρ)
δ

1− δ
rτi − (1− ρi) c+ [1− (1− σ) ρi − ρσ]

δ

1− δ
bτi − τi

αi∫
αL

αf (α) dα

(13)

Substituting equation (13) into equation (11) yields:

αi =
c

τi
− δ

1− δ
[1− σ (1− ρ−i)] b− ρ−i

δ

1− δ
r

+
δρ−i

τi (1− δρ)

(1− ρ)
δ

1− δ
rτi − (1− ρi) c+ [1− (1− σ) ρi − ρσ]

δ

1− δ
bτi − τi

αi∫
αL

αf (α) dα

(14)

If we manipulate equation (14), we can see that cutpoint αi is implicitly defined by the following
function:

Ψi ≡ αi (1− δρ)− (1− δρ−i)
c

τi
+ [1− σ + (σ − δ) ρ−i]

δ

1− δ
b+ δρ−i

r +

αi∫
αL

αf (α) dα

 = 0(15)

To see that this function can generate an interior equilibrium, note that:

Ψi
αi = αi [−δρ−if (αi)] + (1− δρ) + δρ−iαif (αi) = 1− δρ > 0

Because Ψi is strictly increasing in αi, if there exists a value αi that satisfies Ψi (αi) = 0, this value
is unique. Consider the value of function Ψi in the limit as δ becomes arbitrarily small:

lim
δ→0

Ψi = αi −
c

τi

We can therefore identify the equilibrium cutpoint as δ becomes arbitrarily small:

lim
δ→0

Ψi = 0 ⇔ lim
δ→0

αi =
c

τi
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Recall that by assumption, c
τi
∈ (αL, αH) for every i and α has full support over [αL, αH ]. So

player i has a unique interior cutpoint, αi ∈ (αL, αH), for small δ > 0.

Since this argument holds for an arbitrary player i, there exists a Bayesian Nash equilibrium in
which equilibrium strategies are implicitly defined by the system of n equations with n endogenous
variables α = (α1, α2, . . . αn):

Ψ1 (α) = 0

Ψ2 (α) = 0

. . . . . . . . .

Ψn (α) = 0

Intermediate Results

Note that Ψi is continuously differentiable in all of its arguments. In particular,

Ψi
αi = αi [−δρ−if (αi)] + (1− δρ) + δρ−iαif (αi) = 1− δρ > 0

Note that: limδ→0 Ψi
αi

= 1.

By manipulating equation (15) and using substitutions for the ρ-values, we can show that:

Ψi = αi (1− δρjρ−j)−
c

τi
+ (1− σ)

δ

1− δ
b+

(
ρjρ−j
ρi

)δ c
τi

+ (σ − δ) δ

1− δ
b+ δr + δ

αi∫
αL

αf (α) dα


This allows us to see that the derivative of Ψi with respect to αj (for j 6= i) is:

Ψi
αj = αi [−δf (αj) ρ−j ] + f (αj)

(
ρ−j
ρi

)δ c
τi

+ (σ − δ) δ

1− δ
b+ δr + δ

αi∫
αL

αf (α) dα


= f (αj) ρ−j

( 1

ρi

)δ c
τi

+ (σ − δ) δ

1− δ
b+ δr + δ

αi∫
αL

αf (α) dα

− δαi


= δf (αj)
ρ

ρiρj

 c

τi
+
σ − δ
1− δ

b+ r +

αi∫
αL

αf (α) dα− αiρi


Note that: limδ→0 Ψi

αj
= 0.

Other derivatives and arguments about the Jacobian matrix continue to hold. Additionally, we
can prove the following intermediate result:

Lemma 2. In equilibrium, αi <
c
τi
.
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Proof of Lemma 1. By the derivations above, Ψi
αi
> 0. Note that:

Ψi

(
αi =

c

τi

)
= δρ−i (1− ρi)

c

τi
+ [1− σ + (σ − δ) ρ−i]

δ

1− δ
b+ δρ−i

r +

c
τi∫

αL

αf (α) dα


This is positive for small δ. So the equilibrium value of αi that solves Ψi (αi) = 0 must be less
than c

τi
.

General Comparative Statics

The proof of Proposition 2 continues to hold without any alteration.

Proposition 3: When another player’s trade stake (τj) increases, player i is less likely to file in
any given period.

Proof of Proposition 3. The first half of the proof of Proposition 3 continues to hold. Namely:

∂α1

∂τn
=
−det (C)

det (J)
where C =


Ψ1
τn Ψ1

α2
. . . Ψ1

αn−1
Ψ1
αn

Ψ2
τn Ψ2

α2
. . . Ψ2

αn−1
Ψ2
αn

. . . . . . . . . . . . . . .

Ψn−1
τn Ψn−1

α2
. . . Ψn−1

αn−1
Ψn−1
αn

Ψn
τn Ψn

α2
. . . Ψn

αn−1
Ψn
αn


And:

det (C) = det
(
CT
)

= (−1)2n−3 det (D) = −Ψn
τn det (D11) = − (1− δρ−n)

c

τ2n
det (D11)

As in the main proof, we define the following matrix to ascertain the sign of det (D11):

E ≡ D11 =


Ψ1
αn

Ψ2
αn

. . . Ψn−1
αn

Ψ1
α2

Ψ2
α2

. . . Ψn−1
α2

. . . . . . . . . . . .

Ψ1
αn−1

Ψ2
αn−1

. . . Ψn−1
αn−1



So: det (E) =

n−1∑
k=1

(−1)k+1 Ψk
αn det (E1k)

=
n−1∑
k=1

(−1)k+1

f (αn)
ρ

ρkρn

δ c
τk

+ (σ − δ) δ

1− δ
b+ δr + δ

αk∫
αL

αf (α) dα− δαkρk

det (E1k)

=

[
δf (αn) ρ

ρn

] n−1∑
k=1

(−1)k+1

(
1

ρk

) c

τk
+
σ − δ
1− δ

b+ r +

αk∫
αL

αf (α) dα− αkρk

det (E1k)
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So det (E) > 0 if and only if the following condition holds:

φ ≡
n−1∑
k=1

(−1)k+1

(
1

ρk

) c

τk
+
σ − δ
1− δ

b+ r +

αk∫
αL

αf (α) dα− αkρk

 det (E1k) > 0

By the argument in the main proofs regarding the Jacobian matrix, limδ→0E11 = I. So limδ→0 det(E11) =
det(I) = 1. For k = 2, 3, . . . , n− 1, calculating det (E1k) requires that we remove the k-th column
of E. This removes Ψk

αk
from the k-th row of E. Since all other entries in the k-th row of E

approach 0 as δ approaches 0, limδ→0 det (E1k) = 0. So:

lim
δ→0

φ =

(
1

ρ1

) c

τ1
− α1ρ1 + σb+ r +

α1∫
αL

αf (α) dα


By Lemma 1, we know that α1 <

c
τ1

. This implies that 0 < c
τ1
− α1 <

c
τ1
− α1ρ1. So limδ→0 φ > 0,

which implies that det (E) = det (D11) > 0. We can thus conclude that:

det (C) = − (1− δρ−n)
c

τ2n
det (D11) < 0 ⇒ ∂α1

∂τn
> 0 for small δ

The proof of Proposition 4 continues to hold without any alteration.

Diffusion Comparative Statics

Proposition 5: When the number of affected countries increases, each player is less likely to file
in any given period.

Proof of Proposition 5. Suppose players have identical trade stakes, τi = τ
n . As in the main proof,

our assumption that players have identical trade stakes makes the game symmetric, the system of
Ψi (α)-equations can be simplified to one equation, which I denote as Ψn, with one endogenous
variable, αn.

Let ρn denote the ex ante probability that an arbitrary player does not file the dispute when the
game has n players. In equilibrium, each player in the n-player game uses cutpoint αn, which is
implicitly defined by:

Ψn = αn [1− δ (ρn)n]−
[
1− δ (ρn)n−1

] cn
τ

+
[
1− σ + (σ − δ) (ρn)n−1

] δ

1− δ
b+δ (ρn)n−1

r +

αn∫
αL

αf (α) dα


Consider the value of function Ψn in the limit as δ becomes arbitrarily small:

lim
δ→0

Ψn = αn −
cn

τ

We can therefore identify the equilibrium cutpoint as δ becomes arbitrarily small:

lim
δ→0

Ψn = 0 ⇔ lim
δ→0

αn =
cn

τ
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By the same logic, the unique cutpoint for the (n+ 1)-player game, αn+1, is implicitly defined by:

Ψn+1 = αn+1

[
1− δ (ρn+1)

n+1
]
− [1− δ (ρn+1)

n]
c(n+ 1)

τ

+ [1− σ + (σ − δ) (ρn+1)
n]

δ

1− δ
b+ δ (ρn+1)

n

r +

αn+1∫
αL

αf (α) dα


and the following holds:

lim
δ→0

Ψn+1 = αn+1 −
c (n+ 1)

τ
= 0 ⇔ lim

δ→0
αn+1 =

c (n+ 1)

τ

So limδ→0 αn < limδ→0 αn+1. This means that each player is less likely to file when the number of
players increases and δ is small.

The proof of Propositions 6 and 7 continue to hold without any alteration.

Proposition 8: In observable WTO disputes, cases that challenge diffuse policies will, on average,
have more legal merit than cases that challenge concentrated policies.

Proof of Proposition 8. Suppose players have identical trade stakes, τi = τ
n . By the Proof of

Proposition 1, the marginal benefit for player i of type αi from filing the case when there are n
players is:

Ψn (αi) = αi [1− δ (ρn)n]−
[
1− δ (ρn)n−1

] cn
τ

+
[
1− σ + (σ − δ) (ρn)n−1

] δ

1− δ
b+ δ (ρn)n−1

r +

αi∫
αL

αf (α) dα


So:

Ψn
r (αi) = δ (ρn)n−1 > 0 and lim

r→∞
Ψn (αi) =∞ > 0

and lim
δ→0

Ψn (αi|r = 0) = αi −
cn

τ
< 0⇔ αi <

cn

τ

So for small δ and very high αi-values, player i always files the case, regardless of the value of
r. But for small δ and low αi-values, the intermediate value theorem ensures that there exists a
unique critical value r (αi, n) > 0 such that Ψn (αi|r (αi, n)) = 0, meaning that a player of type αi
files if and only if r (αi, n) ≤ r.

Also note that the marginal benefit for player i of type αi from filing the case when there are n+ 1
players is:

Ψn+1 (αi) = αi

[
1− δ (ρn+1)

n+1
]
− [1− δ (ρn+1)

n]
c(n+ 1)

τ

+ [1− σ + (σ − δ) (ρn+1)
n]

δ

1− δ
b+ δ (ρn+1)

n

r +

αi∫
αL

αf (α) dα


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Given the logic above, for small δ and low αi-values there exists a unique critical value for the
(n+ 1)-player game, r (αi, n+ 1) > 0, such that Ψn+1 (αi|r (αi, n+ 1)) = 0.

Finally, note that:

lim
δ→0

[
Ψn (αi)−Ψn+1 (αi)

]
=
c

τ
> 0

By definition of the critical value:

Ψn (αi|r (αi, n)) = 0 = Ψn+1 (αi|r (αi, n+ 1)) < Ψn (αi|r (αi, n+ 1)) for small δ

This implies that r (αi, n) < r (αi, n+ 1). So as the number of players increases, larger values of r
will be necessary for a player of type αi <

cn
τ to file the case.

A.8 Implication: Diffuseness and Total Trade Stake in Observed
Cases

Recall that for an n-player game, the equilibrium cutpoint, x, is defined by:

Ψn (x) ≡ x [1− δF (x)n]−
[
1− δF (x)n−1

](cn
τ
− δ

1− δ
b

)
+ δF (x)n−1

r +

x∫
αL

αf (α) dα


Then:

∂Ψn (x)

∂τ
=

[
1− δF (x)n−1

] cn
τ2

> 0

So the cutpoint, αn , is decreasing in the total trade stake. This means that each player is more
likely to file as the total trade stake increases. Since diffuseness makes each player less likely to
file, conditional on being filed, the total trade stake in a diffuse case should be larger than in a
concentrated case.
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Empirics

Descriptive Data

Figure 1: Distribution of Number of Countries Affected
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Testing the Proportional Hazards Assumption

Figure 2: Scaled Residuals for Number of Countries Affected Across Time
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Figure 3: Scaled Residuals for Disputed Trade Flows HHi Across Time
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Figure 4: Scaled Residuals for Global Policy Across Time
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Robustness of the Duration Results

Table 1: Duration: Including Only Past Complainants, and Shared Frailty on Legal Issue

(1) (2) (3) (4) (5)

Global Policy -1.02∗∗∗ -0.78∗∗∗ -0.93∗∗∗ -0.95∗∗∗ -0.72∗∗∗

(0.20) (0.19) (0.18) (0.19) (0.18)
Disputed Trade Flows HHi 1.14∗∗∗ 0.98∗∗∗

(0.31) (0.31)
Number of Countries Affected (log) -1.14∗∗∗ -1.16∗∗∗

(0.16) (0.14)
Own Trade Stake (log) 0.34∗∗∗ 0.41∗∗∗ 0.36∗∗∗ 0.34∗∗∗ 0.42∗∗∗

(0.04) (0.04) (0.02) (0.02) (0.03)
ROW Trade Stake (log) -0.19∗∗∗ -0.05 -0.22∗∗∗ -0.20∗∗∗ -0.05

(0.04) (0.05) (0.02) (0.02) (0.03)
Country GDP/cap (log) -0.24∗∗∗ -0.25∗∗∗ -0.26∗∗∗ -0.26∗∗∗ -0.28∗∗∗

(0.07) (0.07) (0.07) (0.07) (0.07)
Country GDP (log) -0.11 -0.15∗∗ -0.04 -0.03 -0.09

(0.08) (0.07) (0.07) (0.07) (0.07)
Country Trade Dependence -0.00∗∗∗ -0.00∗∗ -0.00∗ -0.00∗ -0.00∗

(0.00) (0.00) (0.00) (0.00) (0.00)
Defendant GDP/cap (log) -0.11 -0.14 -0.08 -0.10 -0.12

(0.11) (0.10) (0.08) (0.08) (0.09)
Defendant GDP (log) -0.12∗ -0.03 -0.18∗∗∗ -0.15∗∗ -0.06

(0.07) (0.06) (0.06) (0.06) (0.06)
Defendant Trade Dependence 0.01 0.00 0.00∗ 0.00 -0.00

(0.00) (0.00) (0.00) (0.00) (0.00)
Country Legal Experience 0.45∗∗∗ 0.46∗∗∗ 0.53∗∗∗ 0.51∗∗∗ 0.53∗∗∗

(0.10) (0.10) (0.10) (0.10) (0.10)
Initiation Year -0.14∗∗∗ -0.15∗∗∗ -0.15∗∗∗ -0.14∗∗∗ -0.15∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02)

Legal Issue Fixed Effects YES YES
N 7863 7863 16145 16145 16145

Cox Proportional Hazards estimates, errors clustered on common dispute. Sample restricted to countries that have

filed a WTO challenge in Columns 1 and 2, with clustered errors on common dispute. Shared frailty parameter on

legal issue in Columns 3, 4, and 5. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 2: Duration: Excluding Multiple Complainant Disputes

(1) (2) (3)

Global Policy -1.00∗∗∗ -1.04∗∗∗ -0.80∗∗∗

(0.21) (0.20) (0.18)
Disputed Trade Flows HHi 1.10∗∗∗

(0.32)
Number of Countries Affected (log) -1.23∗∗∗

(0.16)
Own Trade Stake (log) 0.37∗∗∗ 0.34∗∗∗ 0.42∗∗∗

(0.04) (0.04) (0.04)
ROW Trade Stake (log) -0.22∗∗∗ -0.19∗∗∗ -0.03

(0.04) (0.04) (0.05)
Country GDP/cap (log) -0.23∗∗∗ -0.24∗∗∗ -0.25∗∗∗

(0.07) (0.07) (0.07)
Country GDP (log) -0.06 -0.05 -0.11

(0.08) (0.08) (0.08)
Country Trade Dependence -0.00∗∗ -0.00∗∗ -0.00∗∗

(0.00) (0.00) (0.00)
Defendant GDP/cap (log) -0.09 -0.13 -0.17∗

(0.10) (0.11) (0.09)
Defendant GDP (log) -0.18∗∗∗ -0.15∗∗ -0.05

(0.06) (0.07) (0.07)
Defendant Trade Dependence 0.01∗ 0.00 0.00

(0.00) (0.00) (0.00)
Country Legal Experience 0.54∗∗∗ 0.52∗∗∗ 0.53∗∗∗

(0.10) (0.10) (0.10)
Initiation Year -0.14∗∗∗ -0.14∗∗∗ -0.15∗∗∗

(0.02) (0.02) (0.02)

Legal Measure Fixed Effects YES YES YES
N 16078 16078 16078

Cox Proportional Hazards estimates, errors clustered on common dispute. Sample restricted to single-complainant

cases. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 3: Duration: Varying the Value Threshold for Number of Countries Affected

(1) (2) (3) (4)

Global Policy -0.88∗∗∗ -0.85∗∗∗ -0.76∗∗∗ -0.71∗∗∗

(0.20) (0.19) (0.19) (0.19)
Number of Countries Affected (log) (> USD 0) -0.81∗∗∗

(0.19)
Number of Countries Affected (log) (> USD100,000) -1.15∗∗∗

(0.17)
Number of Countries Affected (log) (> USD500,000) -1.20∗∗∗

(0.16)
Number of Countries Affected (log) (> USD1M) -1.03∗∗∗

(0.15)
Own Trade Stake (log) 0.38∗∗∗ 0.40∗∗∗ 0.42∗∗∗ 0.42∗∗∗

(0.04) (0.03) (0.04) (0.04)
ROW Trade Stake (log) -0.09 -0.04 -0.04 -0.07

(0.06) (0.05) (0.05) (0.04)
Country GDP/cap (log) -0.27∗∗∗ -0.27∗∗∗ -0.28∗∗∗ -0.26∗∗∗

(0.07) (0.07) (0.08) (0.08)
Country GDP (log) -0.07 -0.09 -0.10 -0.10

(0.08) (0.07) (0.07) (0.07)
Country Trade Dependence -0.00∗ -0.00∗ -0.00∗ -0.00∗∗

(0.00) (0.00) (0.00) (0.00)
Defendant GDP/cap (log) -0.11 -0.12 -0.12 -0.14

(0.11) (0.10) (0.10) (0.11)
Defendant GDP (log) -0.11∗ -0.06 -0.06 -0.03

(0.06) (0.07) (0.07) (0.07)
Defendant Trade Dependence 0.00 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00)
Country Legal Experience 0.55∗∗∗ 0.53∗∗∗ 0.54∗∗∗ 0.52∗∗∗

(0.10) (0.10) (0.10) (0.10)
Initiation Year -0.15∗∗∗ -0.15∗∗∗ -0.15∗∗∗ -0.16∗∗∗

(0.03) (0.03) (0.02) (0.03)

Legal Measure Fixed Effects YES YES YES YES
N 16145 16145 16145 16145

Cox Proportional Hazards estimates, errors clustered on common dispute. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 4: Duration: Dispute-Level Analysis

(1) (2) (3) (4) (5)

Global Policy -0.59∗∗∗ -0.57∗∗∗ -0.60∗∗∗

(0.18) (0.18) (0.18)
Disputed Trade Flows HHi 0.73∗∗∗ 0.73∗∗∗

(0.26) (0.27)
Number of Countries Affected (log) -0.38∗∗∗ -0.35∗∗

(0.14) (0.15)
Own Trade Stake (log) 0.14∗∗∗ 0.15∗∗∗ 0.12∗∗∗ 0.15∗∗∗ 0.13∗∗∗

(0.03) (0.03) (0.03) (0.03) (0.03)
ROW Trade Stake (log) -0.09∗∗∗ -0.03 -0.08∗∗∗ -0.03 -0.07∗∗∗

(0.03) (0.03) (0.03) (0.04) (0.03)
Country GDP/cap (log) 0.23∗∗∗ 0.21∗∗∗ 0.21∗∗∗ 0.22∗∗∗ 0.21∗∗∗

(0.07) (0.08) (0.08) (0.08) (0.07)
Country GDP (log) -0.08 -0.06 -0.06 -0.07 -0.06

(0.08) (0.09) (0.09) (0.09) (0.08)
Country Trade Dependence 0.00 0.00 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00)
Defendant GDP/cap (log) -0.06 -0.10 -0.08 -0.10 -0.10

(0.09) (0.09) (0.09) (0.09) (0.10)
Defendant GDP (log) -0.03 0.03 0.02 0.02 0.01

(0.06) (0.06) (0.06) (0.06) (0.06)
Defendant Trade Dependence -0.00 -0.00 -0.00 -0.00 -0.00

(0.00) (0.00) (0.00) (0.00) (0.00)
Country Legal Experience -0.29∗∗ -0.32∗∗ -0.32∗∗∗ -0.31∗∗ -0.31∗∗∗

(0.12) (0.13) (0.12) (0.12) (0.12)
Initiation Year -0.09∗∗∗ -0.09∗∗∗ -0.08∗∗∗ -0.09∗∗∗ -0.09∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02)

Legal Measure Fixed Effects YES YES YES YES YES
N 266 266 266 266 266

Cox Proportional Hazards estimates. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Robustness of the Legal Success Results

Table 5: Legal Success: Single-Stage Estimation

(1) (2) (3)

Global Policy 1.22∗∗∗ 1.28∗∗∗ 1.31∗∗∗

(0.47) (0.48) (0.48)
Disputed Trade Flows HHi -1.02∗

(0.53)
Number of Countries Affected (log) 0.28∗

(0.17)
Own Trade Stake (log) -0.10∗∗ -0.12∗∗∗ -0.15∗∗∗

(0.04) (0.05) (0.05)
Complainant GDP (log) -0.07 -0.04 -0.07

(0.10) (0.09) (0.09)
Defendant GDP (log) 0.09 0.06 0.04

(0.08) (0.08) (0.08)
Complainant Legal Experience 0.08 0.10 0.12

(0.17) (0.16) (0.16)
Initiation Year -0.00 -0.02 -0.01

(0.03) (0.03) (0.03)
Constant 9.41 32.63 19.17

(60.90) (60.79) (59.90)

Legal Measure Fixed Effects YES YES YES
N 140 140 140

Maximum-likelihood probit estimates. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 6: Legal Success: Accounting for Multiple Complainants

(1) (2) (3) (4)
Ruling Won Net of Appeal (2nd stage eq.)

Global Policy 1.07∗∗ 1.02∗∗ 1.13∗ 1.19∗∗

(0.49) (0.48) (0.61) (0.59)
Disputed Trade Flows HHi -1.08∗∗ -1.34∗

(0.52) (0.73)
Number of Countries Affected (log) 0.38∗∗ 0.67∗∗∗

(0.17) (0.22)
Own Trade Stake (log) -0.09∗ -0.12∗∗ -0.08 -0.16∗∗∗

(0.05) (0.05) (0.06) (0.06)
Complainant GDP (log) -0.01 -0.06 -0.14 -0.24∗

(0.10) (0.10) (0.13) (0.13)
Defendant GDP (log) 0.07 0.05 0.02 -0.04

(0.09) (0.08) (0.14) (0.15)
Complainant Legal Experience 0.12 0.16 0.53∗∗ 0.67∗∗∗

(0.16) (0.16) (0.24) (0.26)
Initiation Year -0.02 -0.01 0.04 0.06

(0.03) (0.03) (0.04) (0.04)
Number of Complainants -0.04 -0.07

(0.08) (0.08)
Constant 31.00 22.57 -77.14 -105.34

(61.98) (59.36) (81.16) (79.92)
Dispute Goes to Ruling (1st stage eq.)

Number of Third Parties 0.25∗∗∗ 0.25∗∗∗ 0.25∗∗∗ 0.24∗∗∗

(0.04) (0.04) (0.05) (0.05)
Own Trade Stake (log) 0.05∗∗ 0.05∗∗ 0.03 0.03

(0.02) (0.02) (0.02) (0.02)
Complainant GDP (log) -0.01 -0.01 -0.09 -0.10

(0.06) (0.06) (0.08) (0.08)
Defendant GDP (log) 0.07 0.07 0.20∗∗∗ 0.20∗∗∗

(0.04) (0.04) (0.05) (0.05)
Complainant Legal Experience 0.11 0.11 0.16 0.16

(0.10) (0.10) (0.13) (0.13)
Constant -3.60∗∗ -3.61∗∗ -4.69∗∗ -4.67∗∗

(1.75) (1.74) (2.22) (2.21)
Legal Measure Fixed Effects YES YES YES YES
N 310 310 209 209

Heckman probit selection model with maximum likelihood (ML) estimates. First stage estimates likelihood of a

ruling. Second stage estimates likelihood of a pro-complainant ruling. Robust standard errors clustered on the

common dispute. Sample restricted to single complainant disputes in Columns 3 and 4. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01

38


